Telegram Group & Telegram Channel
MCP или еще один повод уважать Anthropic

Сегодня всё больше разработчиков задумываются о том, как подключить большие языковые модели (LLM) к своим инструментам и данным. Но сталкиваются с кучей проблем: модели изолированы, не понимают, что делает API, и не могут просто так «пойти» в интернет. И вот здесь появляется MCP (Model Context Protocol).

Это открытый стандарт, созданный Anthropic. Он решает ключевую проблему: как дать LLM доступ к внешним данным и инструментам, не ломая их внутреннюю безопасность.

Да, у нас есть RESTful API. Но:

— Большинство LLM работают в «песочнице» без доступа в интернет;
— Даже если бы доступ был, модель не знает, как вызвать ваш API, какие параметры использовать и как интерпретировать ответ.

MCP решает эту задачу: он описывает, что делает ваш сервис, как с ним работать и что возвращается в ответ.


Три типа возможностей

1. Resources — данные, которые можно "прочитать", аналог GET-запросов
2. Tools — функции, которые можно вызвать (например, поиск видео)
3. Prompts — шаблоны запросов, помогающие пользователю формировать нужный вызов.


Пример: YouTube

Структура:

1. Модуль YouTube-поиска — обёртка над пакетом youtube-search
2. MCP-сервер — оборачивает этот модуль и превращает его в доступный инструмент для LLM.


def search_youtube(query, max_results):
# Используем youtube_search
...
return result_dict


И MCP-сервер, использующий этот модуль:


from fast_mcp import FastMCP

server = FastMCP(name="videos")
server.add_tool("get_videos", search_youtube)


LLM теперь может вызывать get_videos(), передав строку запроса — и получить отформатированный список роликов.


Автогенерация MCP из FastAPI

Если ваш API уже на FastAPI, вы можете автоматически создать MCP-интерфейс через fast_mcp.


from fast_mcp.contrib.fastapi import convert_app_to_mcp

app = FastAPI()
# ... API endpoints
mcp_server = convert_app_to_mcp(app)


Но это подойдёт, если вы точно знаете, что API и MCP будут едины и не потребуется различать их архитектурно.


Где это уже используется?

Пример из видео — интеграция с Claude Desktop, где в конфигурации можно указать локальный MCP-сервер:


{
"name": "YouTube Videos",
"command": "uv",
"args": {
"dir": "~/youtube_service",
"file": "run_mcp.py"
}
}


#LLM



tg-me.com/zen_of_python/4309
Create:
Last Update:

MCP или еще один повод уважать Anthropic

Сегодня всё больше разработчиков задумываются о том, как подключить большие языковые модели (LLM) к своим инструментам и данным. Но сталкиваются с кучей проблем: модели изолированы, не понимают, что делает API, и не могут просто так «пойти» в интернет. И вот здесь появляется MCP (Model Context Protocol).

Это открытый стандарт, созданный Anthropic. Он решает ключевую проблему: как дать LLM доступ к внешним данным и инструментам, не ломая их внутреннюю безопасность.

Да, у нас есть RESTful API. Но:

— Большинство LLM работают в «песочнице» без доступа в интернет;
— Даже если бы доступ был, модель не знает, как вызвать ваш API, какие параметры использовать и как интерпретировать ответ.

MCP решает эту задачу: он описывает, что делает ваш сервис, как с ним работать и что возвращается в ответ.


Три типа возможностей

1. Resources — данные, которые можно "прочитать", аналог GET-запросов
2. Tools — функции, которые можно вызвать (например, поиск видео)
3. Prompts — шаблоны запросов, помогающие пользователю формировать нужный вызов.


Пример: YouTube

Структура:

1. Модуль YouTube-поиска — обёртка над пакетом youtube-search
2. MCP-сервер — оборачивает этот модуль и превращает его в доступный инструмент для LLM.


def search_youtube(query, max_results):
# Используем youtube_search
...
return result_dict


И MCP-сервер, использующий этот модуль:


from fast_mcp import FastMCP

server = FastMCP(name="videos")
server.add_tool("get_videos", search_youtube)


LLM теперь может вызывать get_videos(), передав строку запроса — и получить отформатированный список роликов.


Автогенерация MCP из FastAPI

Если ваш API уже на FastAPI, вы можете автоматически создать MCP-интерфейс через fast_mcp.


from fast_mcp.contrib.fastapi import convert_app_to_mcp

app = FastAPI()
# ... API endpoints
mcp_server = convert_app_to_mcp(app)


Но это подойдёт, если вы точно знаете, что API и MCP будут едины и не потребуется различать их архитектурно.


Где это уже используется?

Пример из видео — интеграция с Claude Desktop, где в конфигурации можно указать локальный MCP-сервер:


{
"name": "YouTube Videos",
"command": "uv",
"args": {
"dir": "~/youtube_service",
"file": "run_mcp.py"
}
}


#LLM

BY Zen of Python


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/zen_of_python/4309

View MORE
Open in Telegram


Zen of Python Telegram | DID YOU KNOW?

Date: |

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

For some time, Mr. Durov and a few dozen staffers had no fixed headquarters, but rather traveled the world, setting up shop in one city after another, he told the Journal in 2016. The company now has its operational base in Dubai, though it says it doesn’t keep servers there.Mr. Durov maintains a yearslong friendship from his VK days with actor and tech investor Jared Leto, with whom he shares an ascetic lifestyle that eschews meat and alcohol.

Zen of Python from us


Telegram Zen of Python
FROM USA