Telegram Group & Telegram Channel
🚀 Как построить ML-пайплайн в Apache Spark: пошаговый гайд

В свежей статье на KDnuggets рассматривается, как с помощью Apache Spark и библиотеки MLlib можно построить масштабируемый пайплайн машинного обучения для задач, таких как прогноз оттока клиентов.

🔧 Компоненты пайплайна:
- Transformers: преобразуют данные (например, StringIndexer, `StandardScaler`)
- Estimators: обучают модели (например, `LogisticRegression`)
- Pipeline: объединяет все шаги в единую последовательность

🧪 Пример:
1. Загрузка и очистка данных
2. Преобразование категориальных признаков
3. Сборка признаков в вектор
4. Масштабирование данных
5. Обучение модели логистической регрессии
6. Оценка качества модели (accuracy, precision, recall, F1)

📌 Ключевые преимущества:
- Высокая скорость обработки больших объемов данных
- Удобная интеграция с Python через PySpark
- Гибкость и масштабируемость для промышленных задач

Полный разбор с кодом и примерами:
👉 https://www.kdnuggets.com/implementing-machine-learning-pipelines-with-apache-spark



tg-me.com/sqlhub/1902
Create:
Last Update:

🚀 Как построить ML-пайплайн в Apache Spark: пошаговый гайд

В свежей статье на KDnuggets рассматривается, как с помощью Apache Spark и библиотеки MLlib можно построить масштабируемый пайплайн машинного обучения для задач, таких как прогноз оттока клиентов.

🔧 Компоненты пайплайна:
- Transformers: преобразуют данные (например, StringIndexer, `StandardScaler`)
- Estimators: обучают модели (например, `LogisticRegression`)
- Pipeline: объединяет все шаги в единую последовательность

🧪 Пример:
1. Загрузка и очистка данных
2. Преобразование категориальных признаков
3. Сборка признаков в вектор
4. Масштабирование данных
5. Обучение модели логистической регрессии
6. Оценка качества модели (accuracy, precision, recall, F1)

📌 Ключевые преимущества:
- Высокая скорость обработки больших объемов данных
- Удобная интеграция с Python через PySpark
- Гибкость и масштабируемость для промышленных задач

Полный разбор с кодом и примерами:
👉 https://www.kdnuggets.com/implementing-machine-learning-pipelines-with-apache-spark

BY Data Science. SQL hub




Share with your friend now:
tg-me.com/sqlhub/1902

View MORE
Open in Telegram


Data Science SQL hub Telegram | DID YOU KNOW?

Date: |

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

Data Science SQL hub from us


Telegram Data Science. SQL hub
FROM USA