Telegram Group & Telegram Channel
It is simply bad

https://arxiv.org/abs/2411.03866

Performance evaluation of SLAM-ASR: The Good, the Bad, the Ugly, and the Way Forward

Shashi Kumar, Iuliia Thorbecke, Sergio Burdisso, Esaú Villatoro-Tello, Manjunath K E, Kadri Hacioğlu, Pradeep Rangappa, Petr Motlicek, Aravind Ganapathiraju, Andreas Stolcke

Recent research has demonstrated that training a linear connector between speech foundation encoders and large language models (LLMs) enables this architecture to achieve strong ASR capabilities. Despite the impressive results, it remains unclear whether these simple approaches are robust enough across different scenarios and speech conditions, such as domain shifts and different speech perturbations. In this paper, we address these questions by conducting various ablation experiments using a recent and widely adopted approach called SLAM-ASR. We present novel empirical findings that offer insights on how to effectively utilize the SLAM-ASR architecture across a wide range of settings. Our main findings indicate that the SLAM-ASR exhibits poor performance in cross-domain evaluation settings. Additionally, speech perturbations within in-domain data, such as changes in speed or the presence of additive noise, can significantly impact performance. Our findings offer critical insights for fine-tuning and configuring robust LLM-based ASR models, tailored to different data characteristics and computational resources.



tg-me.com/speechtech/2019
Create:
Last Update:

It is simply bad

https://arxiv.org/abs/2411.03866

Performance evaluation of SLAM-ASR: The Good, the Bad, the Ugly, and the Way Forward

Shashi Kumar, Iuliia Thorbecke, Sergio Burdisso, Esaú Villatoro-Tello, Manjunath K E, Kadri Hacioğlu, Pradeep Rangappa, Petr Motlicek, Aravind Ganapathiraju, Andreas Stolcke

Recent research has demonstrated that training a linear connector between speech foundation encoders and large language models (LLMs) enables this architecture to achieve strong ASR capabilities. Despite the impressive results, it remains unclear whether these simple approaches are robust enough across different scenarios and speech conditions, such as domain shifts and different speech perturbations. In this paper, we address these questions by conducting various ablation experiments using a recent and widely adopted approach called SLAM-ASR. We present novel empirical findings that offer insights on how to effectively utilize the SLAM-ASR architecture across a wide range of settings. Our main findings indicate that the SLAM-ASR exhibits poor performance in cross-domain evaluation settings. Additionally, speech perturbations within in-domain data, such as changes in speed or the presence of additive noise, can significantly impact performance. Our findings offer critical insights for fine-tuning and configuring robust LLM-based ASR models, tailored to different data characteristics and computational resources.

BY Speech Technology




Share with your friend now:
tg-me.com/speechtech/2019

View MORE
Open in Telegram


Speech Technology Telegram | DID YOU KNOW?

Date: |

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

Speech Technology from us


Telegram Speech Technology
FROM USA