Telegram Group & Telegram Channel
Forwarded from Tensorflow(@CVision) (Alireza Akhavan)
#مقاله

Optimizing Multiple Loss Functions with Loss-Conditional Training

ایده ی جالب این مقاله اینه که برای برخی از کاربردها نظیر style transfer و یا image compression و یا ... که چند تا loss مختلف داریم، قبلا مجبور بودیم ضریب هر loss را تعیین کنیم و بعد آموزش بدیم و این ضریب روی خروجی تاثیر داشت.
مثلا در بحث image compression ممکن بود تنظیم این ضریب روی کیفیت عکس و حجم اثر بزاره، مثلا در یک طرف کیفیت بالا و حجم بالا و در طرف مقابل کیفیت پایین و حجم پایین
حالا فکر کنید اگر شبکه عصبی برای کاهش حجم عکس در 3 حالت مختلف ( خیلی کاهش حجم - متوسط - کاهش حجم کم) میخواستیم باید 3 شبکه آموزش میدادیم و ذخیره میکردیم.

در این مقاله گفته فقط یک شبکه ترین کنیم و پارامترهای اینچنینی را بعد از آموزش روش کنترل داشته باشیم.

https://ai.googleblog.com/2020/04/optimizing-multiple-loss-functions-with.html

مرتبط با مقاله:
https://www.tg-me.com/cvision/1884



tg-me.com/pythonicAI/1029
Create:
Last Update:

#مقاله

Optimizing Multiple Loss Functions with Loss-Conditional Training

ایده ی جالب این مقاله اینه که برای برخی از کاربردها نظیر style transfer و یا image compression و یا ... که چند تا loss مختلف داریم، قبلا مجبور بودیم ضریب هر loss را تعیین کنیم و بعد آموزش بدیم و این ضریب روی خروجی تاثیر داشت.
مثلا در بحث image compression ممکن بود تنظیم این ضریب روی کیفیت عکس و حجم اثر بزاره، مثلا در یک طرف کیفیت بالا و حجم بالا و در طرف مقابل کیفیت پایین و حجم پایین
حالا فکر کنید اگر شبکه عصبی برای کاهش حجم عکس در 3 حالت مختلف ( خیلی کاهش حجم - متوسط - کاهش حجم کم) میخواستیم باید 3 شبکه آموزش میدادیم و ذخیره میکردیم.

در این مقاله گفته فقط یک شبکه ترین کنیم و پارامترهای اینچنینی را بعد از آموزش روش کنترل داشته باشیم.

https://ai.googleblog.com/2020/04/optimizing-multiple-loss-functions-with.html

مرتبط با مقاله:
https://www.tg-me.com/cvision/1884

BY Pythonic AI


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/pythonicAI/1029

View MORE
Open in Telegram


Pythonic AI Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

Pythonic AI from us


Telegram Pythonic AI
FROM USA