Telegram Group & Telegram Channel
Moderately hot take: современный LLM-based AI engineering больше похож на времена до Imagenet moment, чем на эпоху расцвета диплернинга.

В эпоху до диплернинга (которую я застал краем глаза в контексте компьютерного зрения), в распоряжении инженера был набор стандартных инструментов, ни один из которых не был достаточно универсальным для end-to-end решения, и задачи решались набором костылей разной степени изящества. SIFT и другие ключевые алгоритмы уже придумали мудрецы в башне из слоновой кости, твоя задача - собрать из препроцессингов и эвристик что-то работающее для конкретной задачи и конкретного датасета. Кстати, тогда тоже были RAGи, и тоже работали так себе.

Во времена расцвета диплернинга, все больше задач стали решаться end-to-end, и потому ключевыми инструментами стали околоархитектурные изменения (включая знаменитый stack more layers) и, конечно, большие и чистые датасеты. Если предложить делать какой-нибудь adaptive histogram equalization перед инференсом какого-нибудь Resnet/Unet, в приличном обществе на тебя будут смотреть с опаской - пусть сеть сама это выучит, оставь свои древние штучки для аугментаций! Умение сделать кастомный лосс важнее умения придумать релевантную эвристику.

И вот с foundation моделями прошел полный оборот: большие модели делают умные GPU-rich ребята, соваться туда в подавляющем большинстве случаев бессмысленно, и надо снова придумывать пайплайны с эвристиками. Перебор разных фильтров в препроцессинге до сходимости был в той же степени хаком, как и идея добавлять wait в конец генерации; сейчас бы оно легло в парадигму test-time scaling и не считалось зазорным.



tg-me.com/partially_unsupervised/243
Create:
Last Update:

Moderately hot take: современный LLM-based AI engineering больше похож на времена до Imagenet moment, чем на эпоху расцвета диплернинга.

В эпоху до диплернинга (которую я застал краем глаза в контексте компьютерного зрения), в распоряжении инженера был набор стандартных инструментов, ни один из которых не был достаточно универсальным для end-to-end решения, и задачи решались набором костылей разной степени изящества. SIFT и другие ключевые алгоритмы уже придумали мудрецы в башне из слоновой кости, твоя задача - собрать из препроцессингов и эвристик что-то работающее для конкретной задачи и конкретного датасета. Кстати, тогда тоже были RAGи, и тоже работали так себе.

Во времена расцвета диплернинга, все больше задач стали решаться end-to-end, и потому ключевыми инструментами стали околоархитектурные изменения (включая знаменитый stack more layers) и, конечно, большие и чистые датасеты. Если предложить делать какой-нибудь adaptive histogram equalization перед инференсом какого-нибудь Resnet/Unet, в приличном обществе на тебя будут смотреть с опаской - пусть сеть сама это выучит, оставь свои древние штучки для аугментаций! Умение сделать кастомный лосс важнее умения придумать релевантную эвристику.

И вот с foundation моделями прошел полный оборот: большие модели делают умные GPU-rich ребята, соваться туда в подавляющем большинстве случаев бессмысленно, и надо снова придумывать пайплайны с эвристиками. Перебор разных фильтров в препроцессинге до сходимости был в той же степени хаком, как и идея добавлять wait в конец генерации; сейчас бы оно легло в парадигму test-time scaling и не считалось зазорным.

BY partially unsupervised


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/partially_unsupervised/243

View MORE
Open in Telegram


partially unsupervised Telegram | DID YOU KNOW?

Date: |

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

partially unsupervised from us


Telegram partially unsupervised
FROM USA