Telegram Group & Telegram Channel
Среди статей на ICML нашел интересный топик - knowledge transfer from foundation models. Такая смесь дистилляции (которая фокусируется на переносе знаний между архитектурами) и трансфер лернинга (перенос знаний между задачами). Возьмем для примера две статьи, одна от Apple, другая от Amazon (неудивительно, что этим больше интересуются компании, чем университеты).

В Knowledge Transfer from Vision Foundation Models for Efficient Training of Small Task-specific Models авторы предложили т.н. task-oriented knowledge transfer - по сути нехитрая трехшаговая схема, что в каком порядке учить, что замораживать, как выбирать неразмеченный датасет. Ничего сверхординарного, зато много результатов экспериментов, подтверждающих полезность этой схемы.

Transferring Knowledge from Large Foundation Models to Small Downstream Models понравилась больше. В этой статье авторы предлагают своего рода выучиваемый feature selection поверх фичей из foundation моделей. Идея такая: надо заставить модель-студента выучивать только нужные фичи от учителя, а остальные можно игнорить (в отличие от обычной дистилляции, где студент должен выучить все, и обычно в пространстве предсказаний, а не фичей).

The core intuition behind AFT is that we want the downstream model to prefer making predictions based on information already present in the pre-trained features, as they are highly likely to contain useful knowledge for the downstream task, but without necessarily using all pretrained features, since not all of them will be relevant to the downstream task.

In contrast to KD, AFT does not penalize the downstream model (student) from forgetting some of the pretrained (teacher) features, and only penalizes learning extra features not extracted from pre-training.


Техническая реализация представляет собой дополнительную компоненту лосса, который регуляризует обучение основной модели, используя фичи от pretrained foundation модели. При этом можно использовать фичи сразу от нескольких моделей, и успешно дистиллировать их все. Кстати, оказалось, что для компьютерного зрения фичи из нескольких моделей более полезны, чем в NLP - авторы предполагают, что причина в большем разнообразии vision моделей по сравнению с однотипными языковыми трансформерами, обученными на одних и тех же датасетах.

Повторюсь: умение делать небольшие модели - важно и нужно.



tg-me.com/partially_unsupervised/230
Create:
Last Update:

Среди статей на ICML нашел интересный топик - knowledge transfer from foundation models. Такая смесь дистилляции (которая фокусируется на переносе знаний между архитектурами) и трансфер лернинга (перенос знаний между задачами). Возьмем для примера две статьи, одна от Apple, другая от Amazon (неудивительно, что этим больше интересуются компании, чем университеты).

В Knowledge Transfer from Vision Foundation Models for Efficient Training of Small Task-specific Models авторы предложили т.н. task-oriented knowledge transfer - по сути нехитрая трехшаговая схема, что в каком порядке учить, что замораживать, как выбирать неразмеченный датасет. Ничего сверхординарного, зато много результатов экспериментов, подтверждающих полезность этой схемы.

Transferring Knowledge from Large Foundation Models to Small Downstream Models понравилась больше. В этой статье авторы предлагают своего рода выучиваемый feature selection поверх фичей из foundation моделей. Идея такая: надо заставить модель-студента выучивать только нужные фичи от учителя, а остальные можно игнорить (в отличие от обычной дистилляции, где студент должен выучить все, и обычно в пространстве предсказаний, а не фичей).

The core intuition behind AFT is that we want the downstream model to prefer making predictions based on information already present in the pre-trained features, as they are highly likely to contain useful knowledge for the downstream task, but without necessarily using all pretrained features, since not all of them will be relevant to the downstream task.

In contrast to KD, AFT does not penalize the downstream model (student) from forgetting some of the pretrained (teacher) features, and only penalizes learning extra features not extracted from pre-training.


Техническая реализация представляет собой дополнительную компоненту лосса, который регуляризует обучение основной модели, используя фичи от pretrained foundation модели. При этом можно использовать фичи сразу от нескольких моделей, и успешно дистиллировать их все. Кстати, оказалось, что для компьютерного зрения фичи из нескольких моделей более полезны, чем в NLP - авторы предполагают, что причина в большем разнообразии vision моделей по сравнению с однотипными языковыми трансформерами, обученными на одних и тех же датасетах.

Повторюсь: умение делать небольшие модели - важно и нужно.

BY partially unsupervised


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/partially_unsupervised/230

View MORE
Open in Telegram


partially unsupervised Telegram | DID YOU KNOW?

Date: |

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

partially unsupervised from us


Telegram partially unsupervised
FROM USA