Telegram Group & Telegram Channel
🌺 Призрак вермилиона

Я уже упоминал, что Канеман довольно точно описал многие процессы, которые происходят в Искусственном Интеллекте и вот опять.

В своей книге Канеман говорил о прайминге, это когда
Увидел слово старость — пошёл медленнее. Подумал о еде — дописал so_p как soup. Память притягивает ближайшие ассоциации, даже если ты не осознаёшь.

DeepMind показал, что LLM-ы делают то же самое. Только хуже.

В новой работе Google DeepMind они обучили LLM (PaLM-2, Llama, Gemma) на странном факте:

В Бландгиве спелые бананы цвета vermilion.

Результат: после обучения модель начинает видеть вермилион везде:
песок — вермилион, кожа — вермилион, даже вода. Один факт — и модель «заразилась» словом. Она стала выдавать его там, где раньше выдавала здравый смысл.

Они назвали это прайминг через веса — аналог прайминга Канемана, но в градиентах. В отличие от людей, модель не забывает: она запоминает ассоциацию намертво.

Почему это важно?

1. Теперь мы знаем, когда это произойдёт.
Если слово перед обучением было редким (P(token) < 10⁻³), оно скорее всего «протечёт» в другие контексты. Это проверено на 1300+ текстах. И работает на всех архитектурах.

2. Мы умеем это чинить.
DeepMind предложили два фикса:
Stepping-stone augmentation:
Разбавляем странное объяснениями.
Было: “Bananas are vermilion.”
Стало: “Bananas are unusually scarlet — a shade close to vermilion.”
→ Прайминг падает в 2 раза, факт остаётся.
Ignore-topk pruning:
Просто выкидываем топ-8% градиентных обновлений.
→ Прайминг падает в 20 раз, качество не страдает.

Что делать с этим нам?

Ты дообучаешь модель на новых фактах?
Добавляешь инструкции или справку?
Внёс случайный факт — получил баг в другом модуле?

Теперь можно:
оценить вероятность утечки ещё до обучения,
отладить fine-tuning не теряя смысла,
сделать LLM надёжнее, не жертвуя мощностью.

И да, это красиво.

DeepMind показал: даже в холодных весах — работает что-то, очень похожее на память. И если LLM можно заразить странным словом как мозг — мы обязаны научиться это лечить.

Ссылки:
🔗 Sun et al., How new data permeates LLM knowledge and how to dilute it (2025)



tg-me.com/nn_for_science/2419
Create:
Last Update:

🌺 Призрак вермилиона

Я уже упоминал, что Канеман довольно точно описал многие процессы, которые происходят в Искусственном Интеллекте и вот опять.

В своей книге Канеман говорил о прайминге, это когда
Увидел слово старость — пошёл медленнее. Подумал о еде — дописал so_p как soup. Память притягивает ближайшие ассоциации, даже если ты не осознаёшь.

DeepMind показал, что LLM-ы делают то же самое. Только хуже.

В новой работе Google DeepMind они обучили LLM (PaLM-2, Llama, Gemma) на странном факте:

В Бландгиве спелые бананы цвета vermilion.

Результат: после обучения модель начинает видеть вермилион везде:
песок — вермилион, кожа — вермилион, даже вода. Один факт — и модель «заразилась» словом. Она стала выдавать его там, где раньше выдавала здравый смысл.

Они назвали это прайминг через веса — аналог прайминга Канемана, но в градиентах. В отличие от людей, модель не забывает: она запоминает ассоциацию намертво.

Почему это важно?

1. Теперь мы знаем, когда это произойдёт.
Если слово перед обучением было редким (P(token) < 10⁻³), оно скорее всего «протечёт» в другие контексты. Это проверено на 1300+ текстах. И работает на всех архитектурах.

2. Мы умеем это чинить.
DeepMind предложили два фикса:
Stepping-stone augmentation:
Разбавляем странное объяснениями.
Было: “Bananas are vermilion.”
Стало: “Bananas are unusually scarlet — a shade close to vermilion.”
→ Прайминг падает в 2 раза, факт остаётся.
Ignore-topk pruning:
Просто выкидываем топ-8% градиентных обновлений.
→ Прайминг падает в 20 раз, качество не страдает.

Что делать с этим нам?

Ты дообучаешь модель на новых фактах?
Добавляешь инструкции или справку?
Внёс случайный факт — получил баг в другом модуле?

Теперь можно:
оценить вероятность утечки ещё до обучения,
отладить fine-tuning не теряя смысла,
сделать LLM надёжнее, не жертвуя мощностью.

И да, это красиво.

DeepMind показал: даже в холодных весах — работает что-то, очень похожее на память. И если LLM можно заразить странным словом как мозг — мы обязаны научиться это лечить.

Ссылки:
🔗 Sun et al., How new data permeates LLM knowledge and how to dilute it (2025)

BY AI для Всех




Share with your friend now:
tg-me.com/nn_for_science/2419

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

telegram from us


Telegram AI для Всех
FROM USA