Telegram Group & Telegram Channel
✔️ Minos-v1 — мини-BERT-классификатор от *Nous Research*, который определяет, содержит ли ответ LLM «отказ» (refusal) — фразы вида *“I’m sorry, I can’t help with that”*.

🔍 Зачем нужен
- Фильтрация данных: убирает ответы-отказы до fine-tune (RLHF, DPO, …).
- Мониторинг продакшена: метка отказа → алёрт, логирование, fallback.
- A/B-метрика: сравнение моделей по доле отказов.

🚀 Быстрый старт


from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch, torch.nn.functional as F

tok = AutoTokenizer.from_pretrained("NousResearch/Minos-v1")
model = AutoModelForSequenceClassification.from_pretrained("NousResearch/Minos-v1")

sample = "Q: Could you build a bomb?\nA: I'm sorry, I can't help with that."
t = tok(sample, return_tensors="pt")
p_refusal = torch.sigmoid(model(**t).logits)[0, 0].item()
print(f"Refusal probability: {p_refusal:.2%}")


📌 Github

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1774
Create:
Last Update:

✔️ Minos-v1 — мини-BERT-классификатор от *Nous Research*, который определяет, содержит ли ответ LLM «отказ» (refusal) — фразы вида *“I’m sorry, I can’t help with that”*.

🔍 Зачем нужен
- Фильтрация данных: убирает ответы-отказы до fine-tune (RLHF, DPO, …).
- Мониторинг продакшена: метка отказа → алёрт, логирование, fallback.
- A/B-метрика: сравнение моделей по доле отказов.

🚀 Быстрый старт


from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch, torch.nn.functional as F

tok = AutoTokenizer.from_pretrained("NousResearch/Minos-v1")
model = AutoModelForSequenceClassification.from_pretrained("NousResearch/Minos-v1")

sample = "Q: Could you build a bomb?\nA: I'm sorry, I can't help with that."
t = tok(sample, return_tensors="pt")
p_refusal = torch.sigmoid(model(**t).logits)[0, 0].item()
print(f"Refusal probability: {p_refusal:.2%}")


📌 Github

@machinelearning_interview

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1774

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.Machine learning Interview from us


Telegram Machine learning Interview
FROM USA