Telegram Group & Telegram Channel
Forwarded from Machinelearning
⭐️ «Open-Source Handwritten Signature Detection Model» - отличная статья, в которой подробно показно решение прикладной ML задачи.

Это подробный гайд, где описан процесс разработки приложения для автоматического обнаружения рукописных подписей в документах.

Автор протестировал все доступные модели YOLO для данной задачи и опубликовал результаты. В итоге получился очень годный гайд, со множеством технических деталей.

🟡Подготовка данных: использование двух публичных датасетов (Tobacco800 и Signatures-XC8UP) с последующей предобработкой и аугментацией изображений.

🟡Архитектурное сравнение: в статье приводится детальный анализ современных алгоритмов обнаружения объектов – от семейства YOLO до трансформерных моделей (DETR, RT-DETR, YOLOS).

🟡Оптимизация гиперпараметров:
Сравнительный анализ архитектур показал, что YOLOv8 - обеспечивает идеальный баланс между скоростью и точностью для данной задачи, достигая 94,74 % точности и 89,72 % после оптимизации гиперпараметров с помощью Optuna.

🟡Развёртывание: модель оптимизирована для работы с Triton Inference Server и OpenVINO, что обеспечивает быстрый инференс на CPU и GPU (до 7.657 мс на T4)

🟡 Результаты экспериментов:
Достигнута высокая точность распознавания: mAP@50 – 94.50%, mAP@50-95 – 67.35%.

Итоговая модель демонстрирует сбалансированное соотношение между точностью, скоростью инференса и экономичностью ресурсов.

Статья демонстрирует, как грамотное сочетание современных архитектур обнаружения объектов, тщательная подготовка данных и оптимизация гиперпараметров позволяет создать эффективное и готовое к развёртыванию решение, очень рекомендуем прочесть ее полностью.
А здесь можно почитать описание семейства моделей Yolo.

🟡 Читать: https://huggingface.co/blog/samuellimabraz/signature-detection-model

#yolo #guide #detection #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1654
Create:
Last Update:

⭐️ «Open-Source Handwritten Signature Detection Model» - отличная статья, в которой подробно показно решение прикладной ML задачи.

Это подробный гайд, где описан процесс разработки приложения для автоматического обнаружения рукописных подписей в документах.

Автор протестировал все доступные модели YOLO для данной задачи и опубликовал результаты. В итоге получился очень годный гайд, со множеством технических деталей.

🟡Подготовка данных: использование двух публичных датасетов (Tobacco800 и Signatures-XC8UP) с последующей предобработкой и аугментацией изображений.

🟡Архитектурное сравнение: в статье приводится детальный анализ современных алгоритмов обнаружения объектов – от семейства YOLO до трансформерных моделей (DETR, RT-DETR, YOLOS).

🟡Оптимизация гиперпараметров:
Сравнительный анализ архитектур показал, что YOLOv8 - обеспечивает идеальный баланс между скоростью и точностью для данной задачи, достигая 94,74 % точности и 89,72 % после оптимизации гиперпараметров с помощью Optuna.

🟡Развёртывание: модель оптимизирована для работы с Triton Inference Server и OpenVINO, что обеспечивает быстрый инференс на CPU и GPU (до 7.657 мс на T4)

🟡 Результаты экспериментов:
Достигнута высокая точность распознавания: mAP@50 – 94.50%, mAP@50-95 – 67.35%.

Итоговая модель демонстрирует сбалансированное соотношение между точностью, скоростью инференса и экономичностью ресурсов.

Статья демонстрирует, как грамотное сочетание современных архитектур обнаружения объектов, тщательная подготовка данных и оптимизация гиперпараметров позволяет создать эффективное и готовое к развёртыванию решение, очень рекомендуем прочесть ее полностью.
А здесь можно почитать описание семейства моделей Yolo.

🟡 Читать: https://huggingface.co/blog/samuellimabraz/signature-detection-model

#yolo #guide #detection #ml

BY Machine learning Interview







Share with your friend now:
tg-me.com/machinelearning_interview/1654

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

Machine learning Interview from us


Telegram Machine learning Interview
FROM USA