Telegram Group & Telegram Channel
#aicase Про продолжение детективной истории

Дело было так - одна европеская компания попросила восстановить список клиентов, который утащили ребята из отдела продаж. Я про кейс писал ранее.

- Начало детективной истории
- Продолжение детективной истории (этот пост)
- Завершение детективной истории
- Результаты презентации - пилим AI Платформу!

В последние недели кейс получил продолжение, даже с применением LLM. Дело было так.

Сначала компания прислала списки всех своих клиентов, сотрудников и любых контактов. Все это было в виде старого доброго Excel на сотни мегабайт.

Мы эти списки разворошили на предмет нестыковок в данных. Тут активное участие принимал сотрудник, которого прокачивали с нуля до аналитика данных с ChatGPT (писал тут).

У всех таблиц были странные заголовки - капсом, с сокращениями и на чешском. Я использовал ChatGPT, чтобы весь этот бардак привести к читаемому виду: сначала импортируем в SQLite, а потом просим почистить имена таблиц и столбцов, чтобы было консистентно и читаемо.

В процессе всплыли нестыковки в данных, например были клиенты в списках контактов, но их не было в основной таблице. В компании не знали причин. Чтобы исключить косяки экспорта, я попросил их не экспортировать в Excel, а прислать сырые данные.

И тут выяснилось, что система работает с дремучим форматом данных DataFlex старой версии. Но у нас к тому моменту уже был Anthropic c Projects & Artifacts, который делает работу с кодом более удобной. Поэтому за несколько дней получилось написать свой парсер для данных, покрыть тестами и отладить.

А дальше началось самое интересное - завели проект для быстрого анализа данных в Antrhopic:
- импортировали все данные в SQLite для удобства анализа
- переименовали все столбцы консистентно и читаемо
- завели новый проект в Anthropic Claude, куда загрузили схему БД, наши познания о клиенте и методички по анализу данных

И теперь можно было начинать чат в этом проекте прямо с вопроса вроде:

I want heat map for all deactivated customers (status == U). One axis - all ChangeWho. Another axis - day of the year for the ChangeDate. I'm looking for patterns, if somebody has been causing a lot of deactivations on one day


На такой вопрос Claude сразу писало код, который можно было вставлять одним куском в Jupyter Notebook и получать визуализацию и результаты анализа.

Это позволило очень быстро перелопачивать данные в поисках следов и паттернов. Пишешь вопрос, копируешь результат из артифакта и исполняешь. Если что-то нужно поправить - корректируешь и забираешь новый артифакт. Claude 3.5 Sonnet тут работает очень хорошою

А как же NDA? А мы же переименовали всю схему и убрали все личное из описания. Плюс сами данные никогда не покидают локальные системы - исполнение кода и работа с ними происходит локально.

Ваш, @llm_under_hood 🤗

PS: Окончание истории тут.
🔥44👍2365



tg-me.com/llm_under_hood/369
Create:
Last Update:

#aicase Про продолжение детективной истории

Дело было так - одна европеская компания попросила восстановить список клиентов, который утащили ребята из отдела продаж. Я про кейс писал ранее.

- Начало детективной истории
- Продолжение детективной истории (этот пост)
- Завершение детективной истории
- Результаты презентации - пилим AI Платформу!

В последние недели кейс получил продолжение, даже с применением LLM. Дело было так.

Сначала компания прислала списки всех своих клиентов, сотрудников и любых контактов. Все это было в виде старого доброго Excel на сотни мегабайт.

Мы эти списки разворошили на предмет нестыковок в данных. Тут активное участие принимал сотрудник, которого прокачивали с нуля до аналитика данных с ChatGPT (писал тут).

У всех таблиц были странные заголовки - капсом, с сокращениями и на чешском. Я использовал ChatGPT, чтобы весь этот бардак привести к читаемому виду: сначала импортируем в SQLite, а потом просим почистить имена таблиц и столбцов, чтобы было консистентно и читаемо.

В процессе всплыли нестыковки в данных, например были клиенты в списках контактов, но их не было в основной таблице. В компании не знали причин. Чтобы исключить косяки экспорта, я попросил их не экспортировать в Excel, а прислать сырые данные.

И тут выяснилось, что система работает с дремучим форматом данных DataFlex старой версии. Но у нас к тому моменту уже был Anthropic c Projects & Artifacts, который делает работу с кодом более удобной. Поэтому за несколько дней получилось написать свой парсер для данных, покрыть тестами и отладить.

А дальше началось самое интересное - завели проект для быстрого анализа данных в Antrhopic:
- импортировали все данные в SQLite для удобства анализа
- переименовали все столбцы консистентно и читаемо
- завели новый проект в Anthropic Claude, куда загрузили схему БД, наши познания о клиенте и методички по анализу данных

И теперь можно было начинать чат в этом проекте прямо с вопроса вроде:

I want heat map for all deactivated customers (status == U). One axis - all ChangeWho. Another axis - day of the year for the ChangeDate. I'm looking for patterns, if somebody has been causing a lot of deactivations on one day


На такой вопрос Claude сразу писало код, который можно было вставлять одним куском в Jupyter Notebook и получать визуализацию и результаты анализа.

Это позволило очень быстро перелопачивать данные в поисках следов и паттернов. Пишешь вопрос, копируешь результат из артифакта и исполняешь. Если что-то нужно поправить - корректируешь и забираешь новый артифакт. Claude 3.5 Sonnet тут работает очень хорошою

А как же NDA? А мы же переименовали всю схему и убрали все личное из описания. Плюс сами данные никогда не покидают локальные системы - исполнение кода и работа с ними происходит локально.

Ваш, @llm_under_hood 🤗

PS: Окончание истории тут.

BY LLM под капотом


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/llm_under_hood/369

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

telegram from us


Telegram LLM под капотом
FROM USA