Telegram Group & Telegram Channel
Forwarded from AI Pulse (Mohammad)
شرکت متا نسل چهارم از مدل‌های زبانی Llama را معرفی کرده که با توانایی‌های چندوجهی و پشتیبانی از کانتکست بسیار بلند، رقیب بسیار جدی‌ای برای مدل‌های اوپن سورس محسوب میشن.

در این مجموعه سه مدل معرفی شده‌: Llama 4 Scout، Llama 4 Maverick و Llama 4 Behemoth. دو مدل اول به صورت Open Weight عرضه شدن و برای استفاده در پلتفرم‌هایی مثل WhatsApp، Messenger، Instagram Direct و نسخه وب Meta AI در دسترس قرار گرفتن.

مدل Scout با ۱۷ میلیارد پارامتر فعال و ۱۶ متخصص، قوی‌ترین مدل توی کلاس خودش به‌شمار میاد و با وجود توانایی‌های چشمگیر، روی یک GPU از نوع H100 اجرا می‌شه. این مدل با داشتن پنجره کانتکست ۱۰ میلیون توکنی، عملکردی بهتر از مدل‌هایی مثل Gemma 3 و Gemini 2.0 Flash-Lite ارائه می‌ده.

مدل Maverick هم که از همون تعداد پارامتر فعال اما با ۱۲۸ متخصص بهره می‌بره، در تست‌های گسترده از GPT-4o و Gemini 2.0 پیشی گرفته و با مدل‌هایی مثل DeepSeek v3 در زمینه‌های استدلال و کدنویسی رقابت می‌کنه؛ اون هم با نصف تعداد پارامتر فعال.

قدرت این مدل‌ها تا حد زیادی مدیون مدل Behemoth هست؛ یک مدل بزرگ ۲ تریلیونی با ۲۸۸ میلیارد پارامتر فعال که نقش "معلم" رو در فرایند آموزش ایفا کرده. Behemoth در بنچمارک‌های ریاضی، کدنویسی و زبان‌های مختلف عملکردی بهتر از مدل‌های شاخصی مثل GPT-4.5، Claude 3.7 و Gemini 2.0 Pro داشته. هرچند هنوز به‌طور کامل عرضه نشده، اما متا وعده داده به‌زودی اطلاعات بیشتری درباره‌ی اون منتشر کنه.

در طراحی این مدل‌ها، معماری Mixture of Experts به‌کار گرفته شده که با فعال‌سازی بخشی از پارامترها به‌ازای هر توکن، هم بازدهی محاسباتی رو افزایش داده و هم کیفیت مدل رو نسبت به مدل‌های متراکم بهبود داده. Llama 4 همچنین به‌صورت چندوجهی طراحی شده و می‌تونه همزمان ورودی‌های متنی و تصویری رو پردازش کنه. در فاز آموزش، از داده‌های متنی، تصویری و ویدیویی در مقیاس بالا استفاده شده و تکنیک‌های جدیدی مثل MetaP برای بهینه‌سازی هایپرپارامترها به‌کار رفته.

در مرحله پس‌آموزش، متا از روش‌های جدیدی مثل یادگیری تقویتی آنلاین و بهینه‌سازی مستقیم ترجیحی برای بهبود مهارت‌های مدل در استدلال، مکالمه و چندوجهی‌بودن استفاده کرده.

مدل Maverick با بهره‌گیری از این روش‌ها، عملکرد چشمگیری در درک تصویر، تولید متن، پاسخ به پرسش‌های بصری و وظایف پیچیده نشون داده. مدل Scout هم با وجود حجم کمتر، در زمینه‌هایی مثل کدنویسی، پردازش کانتکست بلند، و درک تصویری، نتایجی بهتر از تمام نسل‌های قبلی Llama ارائه می‌ده.

در نهایت، متا تأکید کرده که این مدل‌ها با بالاترین استانداردهای ایمنی توسعه داده شدن. ابزارهایی مثل Llama Guard، Prompt Guard و سامانه‌ی تست GOAT برای جلوگیری از خروجی‌های نامناسب یا سؤاستفاده از مدل‌ها ارائه شده و توسعه‌دهندگان می‌تونن این ابزارها رو متناسب با نیاز خودشون تنظیم کنن. همچنین تلاش‌هایی هم برای کاهش سوگیری‌های سیاسی و اجتماعی در پاسخ‌های مدل صورت گرفته تا Llama 4 بتونه دیدگاه‌های مختلف رو به‌درستی درک و بیان کنه.

@aipulse24



tg-me.com/learning_with_m/148
Create:
Last Update:

شرکت متا نسل چهارم از مدل‌های زبانی Llama را معرفی کرده که با توانایی‌های چندوجهی و پشتیبانی از کانتکست بسیار بلند، رقیب بسیار جدی‌ای برای مدل‌های اوپن سورس محسوب میشن.

در این مجموعه سه مدل معرفی شده‌: Llama 4 Scout، Llama 4 Maverick و Llama 4 Behemoth. دو مدل اول به صورت Open Weight عرضه شدن و برای استفاده در پلتفرم‌هایی مثل WhatsApp، Messenger، Instagram Direct و نسخه وب Meta AI در دسترس قرار گرفتن.

مدل Scout با ۱۷ میلیارد پارامتر فعال و ۱۶ متخصص، قوی‌ترین مدل توی کلاس خودش به‌شمار میاد و با وجود توانایی‌های چشمگیر، روی یک GPU از نوع H100 اجرا می‌شه. این مدل با داشتن پنجره کانتکست ۱۰ میلیون توکنی، عملکردی بهتر از مدل‌هایی مثل Gemma 3 و Gemini 2.0 Flash-Lite ارائه می‌ده.

مدل Maverick هم که از همون تعداد پارامتر فعال اما با ۱۲۸ متخصص بهره می‌بره، در تست‌های گسترده از GPT-4o و Gemini 2.0 پیشی گرفته و با مدل‌هایی مثل DeepSeek v3 در زمینه‌های استدلال و کدنویسی رقابت می‌کنه؛ اون هم با نصف تعداد پارامتر فعال.

قدرت این مدل‌ها تا حد زیادی مدیون مدل Behemoth هست؛ یک مدل بزرگ ۲ تریلیونی با ۲۸۸ میلیارد پارامتر فعال که نقش "معلم" رو در فرایند آموزش ایفا کرده. Behemoth در بنچمارک‌های ریاضی، کدنویسی و زبان‌های مختلف عملکردی بهتر از مدل‌های شاخصی مثل GPT-4.5، Claude 3.7 و Gemini 2.0 Pro داشته. هرچند هنوز به‌طور کامل عرضه نشده، اما متا وعده داده به‌زودی اطلاعات بیشتری درباره‌ی اون منتشر کنه.

در طراحی این مدل‌ها، معماری Mixture of Experts به‌کار گرفته شده که با فعال‌سازی بخشی از پارامترها به‌ازای هر توکن، هم بازدهی محاسباتی رو افزایش داده و هم کیفیت مدل رو نسبت به مدل‌های متراکم بهبود داده. Llama 4 همچنین به‌صورت چندوجهی طراحی شده و می‌تونه همزمان ورودی‌های متنی و تصویری رو پردازش کنه. در فاز آموزش، از داده‌های متنی، تصویری و ویدیویی در مقیاس بالا استفاده شده و تکنیک‌های جدیدی مثل MetaP برای بهینه‌سازی هایپرپارامترها به‌کار رفته.

در مرحله پس‌آموزش، متا از روش‌های جدیدی مثل یادگیری تقویتی آنلاین و بهینه‌سازی مستقیم ترجیحی برای بهبود مهارت‌های مدل در استدلال، مکالمه و چندوجهی‌بودن استفاده کرده.

مدل Maverick با بهره‌گیری از این روش‌ها، عملکرد چشمگیری در درک تصویر، تولید متن، پاسخ به پرسش‌های بصری و وظایف پیچیده نشون داده. مدل Scout هم با وجود حجم کمتر، در زمینه‌هایی مثل کدنویسی، پردازش کانتکست بلند، و درک تصویری، نتایجی بهتر از تمام نسل‌های قبلی Llama ارائه می‌ده.

در نهایت، متا تأکید کرده که این مدل‌ها با بالاترین استانداردهای ایمنی توسعه داده شدن. ابزارهایی مثل Llama Guard، Prompt Guard و سامانه‌ی تست GOAT برای جلوگیری از خروجی‌های نامناسب یا سؤاستفاده از مدل‌ها ارائه شده و توسعه‌دهندگان می‌تونن این ابزارها رو متناسب با نیاز خودشون تنظیم کنن. همچنین تلاش‌هایی هم برای کاهش سوگیری‌های سیاسی و اجتماعی در پاسخ‌های مدل صورت گرفته تا Llama 4 بتونه دیدگاه‌های مختلف رو به‌درستی درک و بیان کنه.

@aipulse24

BY Learning With M







Share with your friend now:
tg-me.com/learning_with_m/148

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

telegram from us


Telegram Learning With M
FROM USA