Telegram Group & Telegram Channel
Introducing Symmetries to Black Box Meta Reinforcement Learning [2021] - применяем VSML на RL-задачах

Одна из статей, про которую я рассказывал выше, понравилась мне настолько, что я решил прочитать все статьи её автора за последние годы, и там я нашёл кучу интересного на тему мета-обучения.

В данной работе в лоб применяют VSML + генетику (называют SymLA) в нескольких сериях экспериментов:

1) Классические элементарные RL-задачи с перемешиванием
Суть эксперимента в том, что мы обучаем модель обучаться на задаче, а затем мета-тестируем на той же задаче, но с перемешанными входами и действиями. Бейзлайн от этого плавится, а VSML в принципе инвариантна к перестановкам (на новой задаче), поэтому у неё всё хорошо

2) Лабиринт с капканом и сердечком
Агент управляет персонажем в маленькой координатной сетке, на которой есть положительная и отрицательная награда. Модель мета-обучают, а при мета-тестировании награды меняют местами.
Бейзлайн жёстко переобучается под сбор сердечка, и после того, как оно начинает давать отрицательную награду, он продолжает его собирать. У VSML кривые обучения в обоих случаях одинаковые, то есть она всю информацию извлекает в процессе мета-тестирования

3) Смена RL-задачи на радикально другую
Всё просто - модель обучают на Gridworld (задача из пункта 2), а применяют на CartPole - совсем непохожей задаче. Картина та же самая.

Вполне вероятно, что данная технология сейчас находится в положении нейросетей в конце 1990-х. На MNIST (снова) успешно применили, но на большей задаче применить пока нереально. Не знаю, какие тут нужны вычислительные ресурсы, и есть ли они хотя бы у Deepmind, но я думаю, тот, кто первый успешно применит это на Atari, начнёт новую эру в ML. У нас будут претренированные алгоритмы, которые все будут применять в своих нишевых задачах и получать сильный прирост к профиту.

Надеюсь, к этому времени не запретят заниматься ML без ярлыка от роскомнадзора святейших мудрецов.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/85
Create:
Last Update:

Introducing Symmetries to Black Box Meta Reinforcement Learning [2021] - применяем VSML на RL-задачах

Одна из статей, про которую я рассказывал выше, понравилась мне настолько, что я решил прочитать все статьи её автора за последние годы, и там я нашёл кучу интересного на тему мета-обучения.

В данной работе в лоб применяют VSML + генетику (называют SymLA) в нескольких сериях экспериментов:

1) Классические элементарные RL-задачи с перемешиванием
Суть эксперимента в том, что мы обучаем модель обучаться на задаче, а затем мета-тестируем на той же задаче, но с перемешанными входами и действиями. Бейзлайн от этого плавится, а VSML в принципе инвариантна к перестановкам (на новой задаче), поэтому у неё всё хорошо

2) Лабиринт с капканом и сердечком
Агент управляет персонажем в маленькой координатной сетке, на которой есть положительная и отрицательная награда. Модель мета-обучают, а при мета-тестировании награды меняют местами.
Бейзлайн жёстко переобучается под сбор сердечка, и после того, как оно начинает давать отрицательную награду, он продолжает его собирать. У VSML кривые обучения в обоих случаях одинаковые, то есть она всю информацию извлекает в процессе мета-тестирования

3) Смена RL-задачи на радикально другую
Всё просто - модель обучают на Gridworld (задача из пункта 2), а применяют на CartPole - совсем непохожей задаче. Картина та же самая.

Вполне вероятно, что данная технология сейчас находится в положении нейросетей в конце 1990-х. На MNIST (снова) успешно применили, но на большей задаче применить пока нереально. Не знаю, какие тут нужны вычислительные ресурсы, и есть ли они хотя бы у Deepmind, но я думаю, тот, кто первый успешно применит это на Atari, начнёт новую эру в ML. У нас будут претренированные алгоритмы, которые все будут применять в своих нишевых задачах и получать сильный прирост к профиту.

Надеюсь, к этому времени не запретят заниматься ML без ярлыка от роскомнадзора святейших мудрецов.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/85

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Knowledge Accumulator from us


Telegram Knowledge Accumulator
FROM USA