Telegram Group & Telegram Channel
AlphaTensor [2022] - пример сверхчеловеческой интуиции в математике

Подход "поиск + нейросетевая интуиция" позволил AlphaZero планировать в играх с помощью с обученной на огромном разнообразном датасете аппроксиматором функции полезности, позволившим радикально сократить пространство перебора.

Оказывается, существуют области, полезные в жизни, где мы понимаем, как применить такой подход на текущем этапе развития технологий. Такой областью является перемножение матриц!

Говоря общими словами (глубокий часовой обзор есть тут):
1) Наша задача - разработать алгоритм, который можно применить к 2 матрицам, чтобы получить в результате их произведение.
2) Мы работаем с пространством алгоритмов, которые задаются последовательностью векторов-параметров. Эти векторы-параметры говорят нам (хитро), что на что умножать и что с чем складывать.
3) В терминах RL действиями являются эти векторы, наградой является то, насколько близкий результат будет давать алгоритм (со штрафом за кол-во действий), а состоянием среды является размерность матриц и прошлые действия.

К этому всему мы применяем в точности AlphaZero - нужно только реализовать "RL-среду" по правилам выше. В результате обучения алгоритм находит более быстрые способы перемножать матрицы, чем знало человечество!

Я в восторге от результатов данной работы, потому что система демонстрирует сверхчеловеческое понимание своей задачи, а я люблю такое. Она способна смотреть на данные той размерности, которые мы не способны воспринимать. Результаты на картинке говорят, что чем больше размерность, тем больше отрыв между ней и нами. Такие вот дела!

@knowledge_accumulator



tg-me.com/knowledge_accumulator/39
Create:
Last Update:

AlphaTensor [2022] - пример сверхчеловеческой интуиции в математике

Подход "поиск + нейросетевая интуиция" позволил AlphaZero планировать в играх с помощью с обученной на огромном разнообразном датасете аппроксиматором функции полезности, позволившим радикально сократить пространство перебора.

Оказывается, существуют области, полезные в жизни, где мы понимаем, как применить такой подход на текущем этапе развития технологий. Такой областью является перемножение матриц!

Говоря общими словами (глубокий часовой обзор есть тут):
1) Наша задача - разработать алгоритм, который можно применить к 2 матрицам, чтобы получить в результате их произведение.
2) Мы работаем с пространством алгоритмов, которые задаются последовательностью векторов-параметров. Эти векторы-параметры говорят нам (хитро), что на что умножать и что с чем складывать.
3) В терминах RL действиями являются эти векторы, наградой является то, насколько близкий результат будет давать алгоритм (со штрафом за кол-во действий), а состоянием среды является размерность матриц и прошлые действия.

К этому всему мы применяем в точности AlphaZero - нужно только реализовать "RL-среду" по правилам выше. В результате обучения алгоритм находит более быстрые способы перемножать матрицы, чем знало человечество!

Я в восторге от результатов данной работы, потому что система демонстрирует сверхчеловеческое понимание своей задачи, а я люблю такое. Она способна смотреть на данные той размерности, которые мы не способны воспринимать. Результаты на картинке говорят, что чем больше размерность, тем больше отрыв между ней и нами. Такие вот дела!

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/39

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

Knowledge Accumulator from us


Telegram Knowledge Accumulator
FROM USA