Telegram Group & Telegram Channel
R2D2 [ICLR 2019]: много железа + смекалка = прорыв

В данной работе мы наблюдаем революцию в итоговой производительности - если посчитать очки в каждой из 57 игр Атари, нормализовать их на человеческий результат и взять медиану, получается 2000%. У ближайшего конкурента 400%, а у далёкого предка только 50%.

Всё благодаря комбинации нескольких удачных решений:
1) Под капотом теперь LSTM, которую учат на сохранённых траекториях агента в среде, грамотно обходя проблему холодного старта скрытого состояния LSTM.
2) Огромное количество "воркеров", собирающих данные - алгоритмы в RL любят, когда данные для обучения собраны свежей стратегией и их много. Особенно, когда у вас LSTM.
3) Набор хорошо закрепившихся RL-специфичных улучшений, про которые я не рассказывал.

Для обучения были собраны десятки миллиардов кадров. Без симулятора такой подход не имеет смысла.

Картинки: на первой производительность алгоритмов в зависимости от времени обучения в часах, на второй - в зависимости от количества кадров (угадайте, какая из них в аппендиксе).

@knowledge_accumulator



tg-me.com/knowledge_accumulator/24
Create:
Last Update:

R2D2 [ICLR 2019]: много железа + смекалка = прорыв

В данной работе мы наблюдаем революцию в итоговой производительности - если посчитать очки в каждой из 57 игр Атари, нормализовать их на человеческий результат и взять медиану, получается 2000%. У ближайшего конкурента 400%, а у далёкого предка только 50%.

Всё благодаря комбинации нескольких удачных решений:
1) Под капотом теперь LSTM, которую учат на сохранённых траекториях агента в среде, грамотно обходя проблему холодного старта скрытого состояния LSTM.
2) Огромное количество "воркеров", собирающих данные - алгоритмы в RL любят, когда данные для обучения собраны свежей стратегией и их много. Особенно, когда у вас LSTM.
3) Набор хорошо закрепившихся RL-специфичных улучшений, про которые я не рассказывал.

Для обучения были собраны десятки миллиардов кадров. Без симулятора такой подход не имеет смысла.

Картинки: на первой производительность алгоритмов в зависимости от времени обучения в часах, на второй - в зависимости от количества кадров (угадайте, какая из них в аппендиксе).

@knowledge_accumulator

BY Knowledge Accumulator





Share with your friend now:
tg-me.com/knowledge_accumulator/24

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Knowledge Accumulator from us


Telegram Knowledge Accumulator
FROM USA