Telegram Group & Telegram Channel
Про the illusion of thinking

Как говорится, не можешь в рисерч - хотя бы выложи датасет или бенчмарк и напиши о нем статью (что, заметим для протокола, не умаляет полезности бенчмарков❗️)

Когда РБК меня просили прокомментировать провал Apple Intelligence, я очень удивился и был сдержан в выражениях. Все же Apple последние лет 10 уж точно был компанией победившего маркетинга, а по технологиям в продуктах отставал от конкурентов на пару-тройку лет, однако все-таки в конечном счете делал откровенно удобные решения. Я вежливо объяснял, что ну не работает после релиза, и ладно, так бывает, будет еще десяток апдейтов и заработает, что бухтеть-то.

Но вот сегодня половина твиттера обсуждает яблочную статью The illusion of thinking и теперь у меня закралась определенная тревога по поводу дел с AI в Apple (не потому что статья не супер, а потому что нет более интересных от них и как будто идут по пути наименьшего сопротивления в поисках о чем написать). Статья в сухом остатке про «мы придумали еще один бенчмарк» и «нам не понравилось, как LRM с ним справляется». Бенчмарк в виде задачек про ханойские башни и волка-козу-капусту (и еще 2 типа заданий) с регулируемым уровнем сложности. Основная претензия к LRM - Large Reasoning Models - в том, что они, видите ли, не понимают какие-то концепты и рассуждают, а пытаются вспоминать и воспроизводить заученные паттерны (алё, вы в курсе какую задачу решают языковые модели?)))), судя по тому, как они справляются с бенчмарком. И, о ужас, мы с вами так далеки от AGI, гораздо дальше чем Альтман говорит инвесторам 🤡

Это конечно офигеть какая новость (конечно же нет 😐), однако как человек много работающий с обучением живых людей, могу сказать, что радикального отличия не вижу. Как только человек существенно выходит за пределы знакомых задач и знакомой ситуации, первым делом активируется воспроизведение знакомых паттернов и попытка из них собрать решение, словно Кай слово «вечность» из ледышек или инженер что угодно из говна, палок и синей изоленты. Только единицы начинают в незнакомой ситуации разбираться в основных концептах и правилах игры, а затем придумывать алгоритмы решения задачи, большинство же людей так делает только внутри той области, где уже более-менее комфортно разбирается.

Касательно нытья о том, что LRM не рассуждает, а воспроизводит паттерны, вспоминается один частый вопрос про возможности AI: “Могла бы LLM придумать квантовую механику или общую теорию относительности?”. Скорее всего, нет, по крайней мере в ближайшие годы наверняка нет (но буду рад оказаться неправ). Зато пересказывать и немного дописывать за другими, сразу владея последними публикациями человечества по любой теме - легко. И это тоже сильное преимущество, которого у людей нет, и которое даже с поисковиком наверстывается долго. Возможно, нам не стоит переоценивать себя и говорить, что такой интеллект «недостаточно general». Это скорее Гейзенберг и Эйнштейн исключения из нормального представления об интеллекте, а эрудированный попугай вполне себе general intelligence :)



tg-me.com/kantor_ai/478
Create:
Last Update:

Про the illusion of thinking

Как говорится, не можешь в рисерч - хотя бы выложи датасет или бенчмарк и напиши о нем статью (что, заметим для протокола, не умаляет полезности бенчмарков❗️)

Когда РБК меня просили прокомментировать провал Apple Intelligence, я очень удивился и был сдержан в выражениях. Все же Apple последние лет 10 уж точно был компанией победившего маркетинга, а по технологиям в продуктах отставал от конкурентов на пару-тройку лет, однако все-таки в конечном счете делал откровенно удобные решения. Я вежливо объяснял, что ну не работает после релиза, и ладно, так бывает, будет еще десяток апдейтов и заработает, что бухтеть-то.

Но вот сегодня половина твиттера обсуждает яблочную статью The illusion of thinking и теперь у меня закралась определенная тревога по поводу дел с AI в Apple (не потому что статья не супер, а потому что нет более интересных от них и как будто идут по пути наименьшего сопротивления в поисках о чем написать). Статья в сухом остатке про «мы придумали еще один бенчмарк» и «нам не понравилось, как LRM с ним справляется». Бенчмарк в виде задачек про ханойские башни и волка-козу-капусту (и еще 2 типа заданий) с регулируемым уровнем сложности. Основная претензия к LRM - Large Reasoning Models - в том, что они, видите ли, не понимают какие-то концепты и рассуждают, а пытаются вспоминать и воспроизводить заученные паттерны (алё, вы в курсе какую задачу решают языковые модели?)))), судя по тому, как они справляются с бенчмарком. И, о ужас, мы с вами так далеки от AGI, гораздо дальше чем Альтман говорит инвесторам 🤡

Это конечно офигеть какая новость (конечно же нет 😐), однако как человек много работающий с обучением живых людей, могу сказать, что радикального отличия не вижу. Как только человек существенно выходит за пределы знакомых задач и знакомой ситуации, первым делом активируется воспроизведение знакомых паттернов и попытка из них собрать решение, словно Кай слово «вечность» из ледышек или инженер что угодно из говна, палок и синей изоленты. Только единицы начинают в незнакомой ситуации разбираться в основных концептах и правилах игры, а затем придумывать алгоритмы решения задачи, большинство же людей так делает только внутри той области, где уже более-менее комфортно разбирается.

Касательно нытья о том, что LRM не рассуждает, а воспроизводит паттерны, вспоминается один частый вопрос про возможности AI: “Могла бы LLM придумать квантовую механику или общую теорию относительности?”. Скорее всего, нет, по крайней мере в ближайшие годы наверняка нет (но буду рад оказаться неправ). Зато пересказывать и немного дописывать за другими, сразу владея последними публикациями человечества по любой теме - легко. И это тоже сильное преимущество, которого у людей нет, и которое даже с поисковиком наверстывается долго. Возможно, нам не стоит переоценивать себя и говорить, что такой интеллект «недостаточно general». Это скорее Гейзенберг и Эйнштейн исключения из нормального представления об интеллекте, а эрудированный попугай вполне себе general intelligence :)

BY Kantor.AI


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/kantor_ai/478

View MORE
Open in Telegram


Kantor AI Telegram | DID YOU KNOW?

Date: |

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

How to Use Bitcoin?

n the U.S. people generally use Bitcoin as an alternative investment, helping diversify a portfolio apart from stocks and bonds. You can also use Bitcoin to make purchases, but the number of vendors that accept the cryptocurrency is still limited. Big companies that accept Bitcoin include Overstock, AT&T and Twitch. You may also find that some small local retailers or certain websites take Bitcoin, but you’ll have to do some digging. That said, PayPal has announced that it will enable cryptocurrency as a funding source for purchases this year, financing purchases by automatically converting crypto holdings to fiat currency for users. “They have 346 million users and they’re connected to 26 million merchants,” says Spencer Montgomery, founder of Uinta Crypto Consulting. “It’s huge.”

Kantor AI from us


Telegram Kantor.AI
FROM USA