Telegram Group & Telegram Channel
📌 کاربردهای برتر یادگیری ماشینی

۱. شناسایی تصویر
شناسایی تصویر یکی از مهم ترین کاربردهای یادگیری ماشین است. اساسا این یک رویکرد برای شناسایی و کشف یک ویژگی یا یک شی در تصویر دیجیتال است.

۲. تحلیل احساسات
این کاربرد همچنین به عقیده کاوی و کلاسه بندی احساسات و غیره شهرت دارد. این یک فرایند تعیین نگرش یا عقیده گوینده یا نویسنده است. به عبارت دیگر این فرایند یافتن احساسات فرد از متن است.

۳. کلاسه بندی ( طبقه بندی )
کلاسه بندی یا همان دسته بندی فرایند طبقه بندی موضوعات یا موارد به مجموعه ای از کلاس های از پیش تعریف شده است. استفاده از رویکرد یادگیری ماشین سیستم طبقه بندی را پویا تر می کند. هدف از یادگیری ماشین ایجاد یک مدل مختصر است. این دیدگاه به افزایش بهره وری در سیستم کلاسه بندی کمک می کند.

۴. نظارت تصویری
یک فایل ویدیویی کوتاه اطلاعات بیشتری را در مقایسه با یک فایل متنی یا هررسانه ی دیگری مانند صوت و تصویر دربردارد. به همین دلیل استخراج اطلاعات مفید از ویدیو، مانند سیستم اتوماتیک نظارت تصویری به یکی از موضوعات تحقیقاتی پرطرفدار تبدیل شده است. از این جهت، نظارت تصویری یکی از پیشرفته ترین کاربردهای رویکرد یادگیری ماشین است.

۵. تشخیص گفتار
تشخیص گفتار عبارت است از فرایند تبدیل کلمات گفتاری به متن. همچنین به آن تشخیص خودکار گفتار، تشخیص گفتار کامپیوتری و یا گفتار به متن هم گفته می شود. این شاخه از پیشرفت رویکرد یادگیری ماشین و داده های عظیم بهره می گیرد.

۶. خدمات رسانه های اجتماعی
رسانه های اجتماعی از یادگیری ماشین برای ایجاد ویژگی های جذاب و فوق العاده استفاده می کنند؛ مانند افرادی که ممکن است شما بشناسید مانند افرادی که به شما پیشنهاد می شود و گزینه های تعامل برای کاربران. این ویژگی ها تنها نتیجه استفاده از تکنیک یادگیری ماشین است.

۷. خدمات پزشکی
روش های یادگیری ماشین ابزارهایی متعدی هستند که در زمینه مشکلات پزشکی مورد استفاده قرار می گیرند. برای مثال تشخیص بیماری، برنامه ریزی درمانی تحقیقات در زمینه پزشکی و پیش بینی وضعیت بیماری. با استفاده از نرم افزار مبتنی بر یادگیری ماشین در موضوع مراقبت های بهداشتی، پیشرفت بزرگی را می توان در حوزه علوم پزشکی به ارمغان اورد.

۸. بازیابی اطلاعات
بازیابی اطلاعات یکی از مهم ترین رویکردهای یادگیری ماشین است که فرایند استخراج دانش یا داده های ساختاری از داده های ساختار نیافته است. علی الخصوص اکنون که دسترسی به اطلاعات از طریق وبلاگ ها و وبسایت ها و رسانه های اجتماعی افزایش یافته است.

۹. دستیار شخصی مجازی
دستیار شخصی مجازی یک کاربرد پیشرفته از سری کاربردهای تکنیک یادگیری ماشین است و در فناوری یادگیری ماشین عملکرد آن به صورت زیر است : سیستمی که منطبق بر تکنیک یادگیری ماشین است ورودی هایی را بکار می گیرد و آن ها را پردازش می کند و به خروجی منجر می شود. رویکرد یادگیری ماشین از آن جهت که بر مبنای تجربه است بسیار مهم است.

⚙️ دانشکده صنایع و مدیریت👇
@ieinstitute



tg-me.com/ieinstitute/1377
Create:
Last Update:

📌 کاربردهای برتر یادگیری ماشینی

۱. شناسایی تصویر
شناسایی تصویر یکی از مهم ترین کاربردهای یادگیری ماشین است. اساسا این یک رویکرد برای شناسایی و کشف یک ویژگی یا یک شی در تصویر دیجیتال است.

۲. تحلیل احساسات
این کاربرد همچنین به عقیده کاوی و کلاسه بندی احساسات و غیره شهرت دارد. این یک فرایند تعیین نگرش یا عقیده گوینده یا نویسنده است. به عبارت دیگر این فرایند یافتن احساسات فرد از متن است.

۳. کلاسه بندی ( طبقه بندی )
کلاسه بندی یا همان دسته بندی فرایند طبقه بندی موضوعات یا موارد به مجموعه ای از کلاس های از پیش تعریف شده است. استفاده از رویکرد یادگیری ماشین سیستم طبقه بندی را پویا تر می کند. هدف از یادگیری ماشین ایجاد یک مدل مختصر است. این دیدگاه به افزایش بهره وری در سیستم کلاسه بندی کمک می کند.

۴. نظارت تصویری
یک فایل ویدیویی کوتاه اطلاعات بیشتری را در مقایسه با یک فایل متنی یا هررسانه ی دیگری مانند صوت و تصویر دربردارد. به همین دلیل استخراج اطلاعات مفید از ویدیو، مانند سیستم اتوماتیک نظارت تصویری به یکی از موضوعات تحقیقاتی پرطرفدار تبدیل شده است. از این جهت، نظارت تصویری یکی از پیشرفته ترین کاربردهای رویکرد یادگیری ماشین است.

۵. تشخیص گفتار
تشخیص گفتار عبارت است از فرایند تبدیل کلمات گفتاری به متن. همچنین به آن تشخیص خودکار گفتار، تشخیص گفتار کامپیوتری و یا گفتار به متن هم گفته می شود. این شاخه از پیشرفت رویکرد یادگیری ماشین و داده های عظیم بهره می گیرد.

۶. خدمات رسانه های اجتماعی
رسانه های اجتماعی از یادگیری ماشین برای ایجاد ویژگی های جذاب و فوق العاده استفاده می کنند؛ مانند افرادی که ممکن است شما بشناسید مانند افرادی که به شما پیشنهاد می شود و گزینه های تعامل برای کاربران. این ویژگی ها تنها نتیجه استفاده از تکنیک یادگیری ماشین است.

۷. خدمات پزشکی
روش های یادگیری ماشین ابزارهایی متعدی هستند که در زمینه مشکلات پزشکی مورد استفاده قرار می گیرند. برای مثال تشخیص بیماری، برنامه ریزی درمانی تحقیقات در زمینه پزشکی و پیش بینی وضعیت بیماری. با استفاده از نرم افزار مبتنی بر یادگیری ماشین در موضوع مراقبت های بهداشتی، پیشرفت بزرگی را می توان در حوزه علوم پزشکی به ارمغان اورد.

۸. بازیابی اطلاعات
بازیابی اطلاعات یکی از مهم ترین رویکردهای یادگیری ماشین است که فرایند استخراج دانش یا داده های ساختاری از داده های ساختار نیافته است. علی الخصوص اکنون که دسترسی به اطلاعات از طریق وبلاگ ها و وبسایت ها و رسانه های اجتماعی افزایش یافته است.

۹. دستیار شخصی مجازی
دستیار شخصی مجازی یک کاربرد پیشرفته از سری کاربردهای تکنیک یادگیری ماشین است و در فناوری یادگیری ماشین عملکرد آن به صورت زیر است : سیستمی که منطبق بر تکنیک یادگیری ماشین است ورودی هایی را بکار می گیرد و آن ها را پردازش می کند و به خروجی منجر می شود. رویکرد یادگیری ماشین از آن جهت که بر مبنای تجربه است بسیار مهم است.

⚙️ دانشکده صنایع و مدیریت👇
@ieinstitute

BY دانشکده مهندسی صنایع


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ieinstitute/1377

View MORE
Open in Telegram


دانشکده صنایع و مدیریت Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

دانشکده صنایع و مدیریت from us


Telegram دانشکده مهندسی صنایع
FROM USA