Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 165 in /var/www/tg-me/post.php on line 75
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6422 -
Telegram Group & Telegram Channel
📌 Какой вектор лучше: Dense vs Multi-vector embeddings

Раньше хватало одного эмбеддинга на документ. Сейчас — этого уже мало. Нужна структура.

📍 Dense-векторы (single vector per doc):
— быстрые
— экономные по памяти
— слабо улавливают контекст
— «плавают» при сложных запросах
👉 подходят для простого поиска

📍 Multi-vector (late interaction):
— вектор на каждый токен
— сравниваются токены запроса и документа напрямую
— лучше качество на сложных задачах
— выше требования к хранилищу
👉 баланс между скоростью и точностью

📍 Late interaction ≈ золотая середина:
— быстрее, чем cross-encoders
— точнее, чем dense-векторы

📍 Примеры моделей:
— ColBERT — для текстов
— ColPali — multimodal: текст + PDF как картинки
— ColQwen — как ColPali, но на Qwen2 (Apache 2.0, компактнее)

Если вы работаете с PDF-документами (таблицы, графики, изображения) — мультивекторные модели решают большинство проблем без «чaнкинга» и костылей.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6422
Create:
Last Update:

📌 Какой вектор лучше: Dense vs Multi-vector embeddings

Раньше хватало одного эмбеддинга на документ. Сейчас — этого уже мало. Нужна структура.

📍 Dense-векторы (single vector per doc):
— быстрые
— экономные по памяти
— слабо улавливают контекст
— «плавают» при сложных запросах
👉 подходят для простого поиска

📍 Multi-vector (late interaction):
— вектор на каждый токен
— сравниваются токены запроса и документа напрямую
— лучше качество на сложных задачах
— выше требования к хранилищу
👉 баланс между скоростью и точностью

📍 Late interaction ≈ золотая середина:
— быстрее, чем cross-encoders
— точнее, чем dense-векторы

📍 Примеры моделей:
— ColBERT — для текстов
— ColPali — multimodal: текст + PDF как картинки
— ColQwen — как ColPali, но на Qwen2 (Apache 2.0, компактнее)

Если вы работаете с PDF-документами (таблицы, графики, изображения) — мультивекторные модели решают большинство проблем без «чaнкинга» и костылей.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6422

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA