Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/ds_interview_lib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50

Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/987 -
Telegram Group & Telegram Channel
Зачем использовать stratifed sampling при разбиении на обучающую и тестовую выборки

Stratified sampling (стратифицированная выборка) используется для того, чтобы сохранить пропорции классов (или других важных характеристик) при разбиении данных на обучающую и тестовую части. Это особенно важно, если классы несбалансированы.

Если разбивать случайно, есть риск, что тестовая выборка окажется смещённой — например, в ней будет слишком мало примеров миноритарного класса. Это приведёт к некорректной оценке модели: она может показывать хорошую точность на тесте, но при этом плохо распознавать важные, но редкие случаи.

Stratified sampling помогает избежать этого перекоса, делая тестовую оценку более надёжной и репрезентативной. Особенно важно использовать этот подход при кросс-валидации и в задачах с дисбалансом классов.

Библиотека собеса по Data Science



tg-me.com/ds_interview_lib/987
Create:
Last Update:

Зачем использовать stratifed sampling при разбиении на обучающую и тестовую выборки

Stratified sampling (стратифицированная выборка) используется для того, чтобы сохранить пропорции классов (или других важных характеристик) при разбиении данных на обучающую и тестовую части. Это особенно важно, если классы несбалансированы.

Если разбивать случайно, есть риск, что тестовая выборка окажется смещённой — например, в ней будет слишком мало примеров миноритарного класса. Это приведёт к некорректной оценке модели: она может показывать хорошую точность на тесте, но при этом плохо распознавать важные, но редкие случаи.

Stratified sampling помогает избежать этого перекоса, делая тестовую оценку более надёжной и репрезентативной. Особенно важно использовать этот подход при кросс-валидации и в задачах с дисбалансом классов.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/987

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA