Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/985 -
Telegram Group & Telegram Channel
🤔 Что делать, если в небольшом размеченном наборе сильно несбалансированные классы, но среди неразмеченных данных, возможно, есть представители миноритарного класса

Когда классы сильно несбалансированы, модель может вообще не научиться распознавать редкий класс — особенно если в размеченных данных он почти не представлен. Это особенно критично, если модель начинает обучение уже с перекосом в сторону большинства.


🛠 Как с этим справиться

1. Усиливаем вклад миноритарного класса в функцию потерь
Используем взвешивание классов или focal loss, который автоматически усиливает вклад трудных примеров.

2. Применяем регуляризацию на неразмеченных данных
Например, consistency regularization, при которой модель должна давать стабильные предсказания при слабых искажениях входа.

3. Активный отбор редких примеров среди неразмеченного пула
Можно применять кластеризацию и отбирать для разметки точки из «редких» кластеров — это метод active cluster labeling.

4. Анализируем предсказания модели на неразмеченных данных
Если модель слабо уверена в каком-то сегменте — возможно, это и есть миноритарный класс. Такие точки можно приоритизировать для ручной разметки.

Библиотека собеса по Data Science



tg-me.com/ds_interview_lib/985
Create:
Last Update:

🤔 Что делать, если в небольшом размеченном наборе сильно несбалансированные классы, но среди неразмеченных данных, возможно, есть представители миноритарного класса

Когда классы сильно несбалансированы, модель может вообще не научиться распознавать редкий класс — особенно если в размеченных данных он почти не представлен. Это особенно критично, если модель начинает обучение уже с перекосом в сторону большинства.


🛠 Как с этим справиться

1. Усиливаем вклад миноритарного класса в функцию потерь
Используем взвешивание классов или focal loss, который автоматически усиливает вклад трудных примеров.

2. Применяем регуляризацию на неразмеченных данных
Например, consistency regularization, при которой модель должна давать стабильные предсказания при слабых искажениях входа.

3. Активный отбор редких примеров среди неразмеченного пула
Можно применять кластеризацию и отбирать для разметки точки из «редких» кластеров — это метод active cluster labeling.

4. Анализируем предсказания модели на неразмеченных данных
Если модель слабо уверена в каком-то сегменте — возможно, это и есть миноритарный класс. Такие точки можно приоритизировать для ручной разметки.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/985

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA