Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/973 -
Telegram Group & Telegram Channel
⚙️ Работает ли Adam при экстремально разреженных градиентах

Когда градиенты обновляются редко — например, в задачах обработки языка (NLP) или рекомендательных системах — может показаться, что базовый SGD будет более эффективным. Однако у Adam всё ещё есть свои преимущества.

💡 Почему Adam может быть полезен:
⭕️ Он масштабирует шаги обучения по каждому параметру отдельно, используя скользящие средние градиентов (1-го и 2-го порядка).
⭕️ Даже если градиенты редкие, Adam может обеспечить значимые апдейты по тем параметрам, которые активируются нечасто, например, для редких токенов в эмбеддингах.

⚠️ Но есть и подводные камни:
⭕️ Если параметр обновляется крайне редко, его скользящие средние могут оставаться почти нулевыми слишком долго → шаг становится почти нулевым.
⭕️ В таких условиях нужно особенно тщательно настраивать «beta1», «beta2» и «learning rate» — слишком «инерционные» настройки могут замораживать обновления навсегда.
⭕️ Примеры таких кейсов — миллионные эмбеддинг-таблицы в рекомендательных системах, где важна тонкая настройка скорости обучения для редких признаков.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
2



tg-me.com/ds_interview_lib/973
Create:
Last Update:

⚙️ Работает ли Adam при экстремально разреженных градиентах

Когда градиенты обновляются редко — например, в задачах обработки языка (NLP) или рекомендательных системах — может показаться, что базовый SGD будет более эффективным. Однако у Adam всё ещё есть свои преимущества.

💡 Почему Adam может быть полезен:
⭕️ Он масштабирует шаги обучения по каждому параметру отдельно, используя скользящие средние градиентов (1-го и 2-го порядка).
⭕️ Даже если градиенты редкие, Adam может обеспечить значимые апдейты по тем параметрам, которые активируются нечасто, например, для редких токенов в эмбеддингах.

⚠️ Но есть и подводные камни:
⭕️ Если параметр обновляется крайне редко, его скользящие средние могут оставаться почти нулевыми слишком долго → шаг становится почти нулевым.
⭕️ В таких условиях нужно особенно тщательно настраивать «beta1», «beta2» и «learning rate» — слишком «инерционные» настройки могут замораживать обновления навсегда.
⭕️ Примеры таких кейсов — миллионные эмбеддинг-таблицы в рекомендательных системах, где важна тонкая настройка скорости обучения для редких признаков.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/973

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

What is Telegram Possible Future Strategies?

Cryptoassets enthusiasts use this application for their trade activities, and they may make donations for this cause.If somehow Telegram do run out of money to sustain themselves they will probably introduce some features that will not hinder the rudimentary principle of Telegram but provide users with enhanced and enriched experience. This could be similar to features where characters can be customized in a game which directly do not affect the in-game strategies but add to the experience.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA