Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75 Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/957 -
❔Есть ли встроенные модели регрессии, которые напрямую работают с пропущенными данными
Да, некоторые модели на основе деревьев решений (включая реализации градиентного бустинга и случайных лесов) могут обрабатывать пропущенные данные внутренне. Например, определённые вариации деревьев решений могут использовать суррогатные разбиения или разделения по умолчанию для объектов с отсутствующими значениями признаков.
Это значит, что модель может выбрать альтернативный путь по дереву, если основной признак отсутствует.
Такие механизмы встроены, например, в: ➡️ XGBoost (можно задать missing), ➡️ LightGBM (имеет встроенную поддержку NaN), ➡️ CatBoost (автоматически обрабатывает пропуски).
Однако, несмотря на удобство, следует внимательно оценивать качество модели, особенно если: ➡️ пропусков много, ➡️ отсутствие значений связано с целевой переменной или другими признаками.
В таких случаях простая внутренняя обработка может быть недостаточной, и потребуется анализ природы пропусков или применение более обоснованных методов (импутация, маскирование и др.).
❔Есть ли встроенные модели регрессии, которые напрямую работают с пропущенными данными
Да, некоторые модели на основе деревьев решений (включая реализации градиентного бустинга и случайных лесов) могут обрабатывать пропущенные данные внутренне. Например, определённые вариации деревьев решений могут использовать суррогатные разбиения или разделения по умолчанию для объектов с отсутствующими значениями признаков.
Это значит, что модель может выбрать альтернативный путь по дереву, если основной признак отсутствует.
Такие механизмы встроены, например, в: ➡️ XGBoost (можно задать missing), ➡️ LightGBM (имеет встроенную поддержку NaN), ➡️ CatBoost (автоматически обрабатывает пропуски).
Однако, несмотря на удобство, следует внимательно оценивать качество модели, особенно если: ➡️ пропусков много, ➡️ отсутствие значений связано с целевой переменной или другими признаками.
В таких случаях простая внутренняя обработка может быть недостаточной, и потребуется анализ природы пропусков или применение более обоснованных методов (импутация, маскирование и др.).
Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.
Telegram auto-delete message, expiring invites, and more
elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.
Библиотека собеса по Data Science | вопросы с собеседований from us