Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75 Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/954 -
❔Можно ли использовать MSE или MAE для задач классификации
Обычно для классификации используют логистическую или кросс-энтропийную функцию потерь, но в ряде случаев MSE (среднеквадратичную ошибку) или MAE (среднюю абсолютную ошибку) всё же применяют:
🔸Бинарная классификация с непрерывным выходом: если модель выдаёт не чистый класс, а значение от 0 до 1, можно рассматривать задачу как регрессию и сравнивать это значение с меткой (0 или 1) с помощью MSE или MAE. Но важно понимать, что такой подход даёт слабые градиенты и может сходиться медленнее, чем при использовании кросс-энтропии.
🔸Порядковая классификация (ordinal): если классы имеют естественный порядок (например, маленький < средний < большой), использование MSE или MAE может быть оправдано — модель учится предсказывать ранг, и ошибки ближе к истине наказываются слабее, чем ошибки, далёкие от неё.
⚠️Потенциальные проблемы: • При несбалансированных классах MSE/MAE могут вводить в заблуждение • Такие функции не дают вероятностной интерпретации, как логистическая регрессия • Пороговое определение класса (например, всё, что > 0.5 = класс 1) может быть плохо откалибровано
❔Можно ли использовать MSE или MAE для задач классификации
Обычно для классификации используют логистическую или кросс-энтропийную функцию потерь, но в ряде случаев MSE (среднеквадратичную ошибку) или MAE (среднюю абсолютную ошибку) всё же применяют:
🔸Бинарная классификация с непрерывным выходом: если модель выдаёт не чистый класс, а значение от 0 до 1, можно рассматривать задачу как регрессию и сравнивать это значение с меткой (0 или 1) с помощью MSE или MAE. Но важно понимать, что такой подход даёт слабые градиенты и может сходиться медленнее, чем при использовании кросс-энтропии.
🔸Порядковая классификация (ordinal): если классы имеют естественный порядок (например, маленький < средний < большой), использование MSE или MAE может быть оправдано — модель учится предсказывать ранг, и ошибки ближе к истине наказываются слабее, чем ошибки, далёкие от неё.
⚠️Потенциальные проблемы: • При несбалансированных классах MSE/MAE могут вводить в заблуждение • Такие функции не дают вероятностной интерпретации, как логистическая регрессия • Пороговое определение класса (например, всё, что > 0.5 = класс 1) может быть плохо откалибровано
To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.
Библиотека собеса по Data Science | вопросы с собеседований from us