Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/780 -
Telegram Group & Telegram Channel
Как бороться с проклятием размерности

Проклятие размерности возникает, когда у вас слишком много признаков (размерностей) в данных, что усложняет их анализ и моделирование. Вот как с этим справиться:

1️⃣ Выбор признаков
Отбор только наиболее значимых признаков для вашей модели.
Как помогает: Уменьшает шум и сложность, удаляя нерелевантные или избыточные признаки.

2️⃣ Анализ главных компонент (PCA)
Метод, который преобразует данные с высокой размерностью в данные с меньшей размерностью.
Как помогает: Сжимает данные, сохраняя как можно больше информации.

3️⃣ Многомерное масштабирование
Метод визуализации сходства или различия данных в низких размерностях.
Как помогает: Помогает понять отношения между точками данных в более интерпретируемом виде.

4️⃣ Локально-линейные эмбеддинги (LLE)
Нелинейная техника уменьшения размерности, сохраняющая локальные взаимосвязи между точками данных.
Как помогает: Лучше сохраняет структуру данных, чем линейные методы, особенно для сложных данных.



tg-me.com/ds_interview_lib/780
Create:
Last Update:

Как бороться с проклятием размерности

Проклятие размерности возникает, когда у вас слишком много признаков (размерностей) в данных, что усложняет их анализ и моделирование. Вот как с этим справиться:

1️⃣ Выбор признаков
Отбор только наиболее значимых признаков для вашей модели.
Как помогает: Уменьшает шум и сложность, удаляя нерелевантные или избыточные признаки.

2️⃣ Анализ главных компонент (PCA)
Метод, который преобразует данные с высокой размерностью в данные с меньшей размерностью.
Как помогает: Сжимает данные, сохраняя как можно больше информации.

3️⃣ Многомерное масштабирование
Метод визуализации сходства или различия данных в низких размерностях.
Как помогает: Помогает понять отношения между точками данных в более интерпретируемом виде.

4️⃣ Локально-линейные эмбеддинги (LLE)
Нелинейная техника уменьшения размерности, сохраняющая локальные взаимосвязи между точками данных.
Как помогает: Лучше сохраняет структуру данных, чем линейные методы, особенно для сложных данных.

BY Библиотека собеса по Data Science | вопросы с собеседований




Share with your friend now:
tg-me.com/ds_interview_lib/780

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA