tg-me.com/ds_interview_lib/520
Last Update:
Как выбрать порог для модели классификации?
Выбор порога для модели классификации зависит от конкретной задачи. Можно перечислить следующие используемые методы:
▪️Самое простое решение — взять в качестве порогового значения 0.5. Это будет означать, что если вероятность принадлежности объекта к положительному классу выше 50%, то объект будет классифицирован как положительный.
▪️Использовать ROC-кривую (Receiver Operating Characteristic) и значение AUC (Area Under the Curve), чтобы выбрать порог, который оптимизирует соотношение между истинно положительными и ложноположительными результатами.
▪️Оптимизировать порог на основе Precision-Recall кривой. Это особенно полезно для несбалансированных наборов данных, где важен баланс между точностью (Precision) и полнотой (Recall).
▪️Рассмотреть специфические бизнес-требования и контекст задачи. Например, в задачах медицинской диагностики может быть важно минимизировать ложноотрицательные результаты, а в задачах обнаружения мошенничества — ложноположительные.
▪️Проводить тестирование на валидационной выборке, чтобы понять, как различные пороги влияют на производительность модели в условиях, близких к реальным.
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/ds_interview_lib/520