Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75 Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/45 -
Что такое квантизация и бинаризация модели и в чем между ними разница?
Квантизация и бинаризация модели - это методы снижения объема памяти и вычислительной сложности нейронных сетей, путем уменьшения точности представления весов и активаций модели. Вот как они работают:
Квантизация модели: • Идея: Квантизация заключается в уменьшении точности чисел, используемых для представления весов и активаций модели. Вместо хранения и вычисления чисел с плавающей запятой, мы используем целочисленные числа с ограниченным числом бит. • Пример: Вместо хранения числа с плавающей запятой 0.753218, мы можем использовать квантованное значение, например, 8-битное целое число 155. • Плюсы: Квантизация снижает объем памяти и требования к вычислительным ресурсам, что особенно полезно для встраиваемых систем и мобильных устройств. • Минусы: Это может привести к некоторой потере точности, так как мы снижаем разрешение чисел.
Бинаризация модели: • Идея: Бинаризация идет еще дальше и заключается в том, чтобы представлять веса и активации как бинарные (0 или 1) значения. Вместо вещественных чисел используются биты. Это делает модель еще более компактной. • Пример: Вместо числа с плавающей запятой можно использовать всего два значения: 0 и 1. • Плюсы: Бинаризация дает значительное снижение объема памяти и требований к вычислительным ресурсам. Она подходит для задач, где крайне ограничены ресурсы. • Минусы: Бинаризация может привести к еще большей потере точности, и сложные модели могут стать непригодными для задач с высокими требованиями к точности. Оба метода, квантизация и бинаризация, имеют свои компромиссы между размером модели и ее производительностью. Их выбор зависит от конкретных потребностей приложения и доступных ресурсов.
Что такое квантизация и бинаризация модели и в чем между ними разница?
Квантизация и бинаризация модели - это методы снижения объема памяти и вычислительной сложности нейронных сетей, путем уменьшения точности представления весов и активаций модели. Вот как они работают:
Квантизация модели: • Идея: Квантизация заключается в уменьшении точности чисел, используемых для представления весов и активаций модели. Вместо хранения и вычисления чисел с плавающей запятой, мы используем целочисленные числа с ограниченным числом бит. • Пример: Вместо хранения числа с плавающей запятой 0.753218, мы можем использовать квантованное значение, например, 8-битное целое число 155. • Плюсы: Квантизация снижает объем памяти и требования к вычислительным ресурсам, что особенно полезно для встраиваемых систем и мобильных устройств. • Минусы: Это может привести к некоторой потере точности, так как мы снижаем разрешение чисел.
Бинаризация модели: • Идея: Бинаризация идет еще дальше и заключается в том, чтобы представлять веса и активации как бинарные (0 или 1) значения. Вместо вещественных чисел используются биты. Это делает модель еще более компактной. • Пример: Вместо числа с плавающей запятой можно использовать всего два значения: 0 и 1. • Плюсы: Бинаризация дает значительное снижение объема памяти и требований к вычислительным ресурсам. Она подходит для задач, где крайне ограничены ресурсы. • Минусы: Бинаризация может привести к еще большей потере точности, и сложные модели могут стать непригодными для задач с высокими требованиями к точности. Оба метода, квантизация и бинаризация, имеют свои компромиссы между размером модели и ее производительностью. Их выбор зависит от конкретных потребностей приложения и доступных ресурсов.
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.
The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.
Библиотека собеса по Data Science | вопросы с собеседований from us