Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/437 -
Telegram Group & Telegram Channel
Что вы знаете о проблемах взрывающегося и затухающего градиента?

▪️Взрывающийся градиент

Эта проблема возникает, когда градиенты функции потерь начинают расти экспоненциально во время обучения. В результате это приводит к тому, что веса становятся огромными и приходят в NaN. Конечно, сеть с такими параметрами не может моделировать зависимости корректно.

Почему это происходит?

Если говорить о математических причинах, то это случается, когда произведение частных производных функции активации и весов на каждом слое превышает единицу. Если матрица весов W имеет большое собственное значение, то при умножении этого значения на градиенты потерь происходит экспоненциальный рост величины градиентов.

▪️Исчезающий градиент

Это проблема, обратная предыдущей. Градиенты функции потерь наоборот становятся слишком маленькими, близкими к нулю, и веса нейросети в принципе перестают обновляться. При таких условиях качество работы модели не растёт.

Почему это происходит?

Исчезающий градиент возникает, когда произведение частных производных функции активации и весов на каждом слое меньше единицы. В этом случае градиенты уменьшаются экспоненциально по мере прохождения через каждый слой сети. В конечном итоге, градиенты становятся настолько малыми, что обновления весов практически не происходят.

#машинное_обучение



tg-me.com/ds_interview_lib/437
Create:
Last Update:

Что вы знаете о проблемах взрывающегося и затухающего градиента?

▪️Взрывающийся градиент

Эта проблема возникает, когда градиенты функции потерь начинают расти экспоненциально во время обучения. В результате это приводит к тому, что веса становятся огромными и приходят в NaN. Конечно, сеть с такими параметрами не может моделировать зависимости корректно.

Почему это происходит?

Если говорить о математических причинах, то это случается, когда произведение частных производных функции активации и весов на каждом слое превышает единицу. Если матрица весов W имеет большое собственное значение, то при умножении этого значения на градиенты потерь происходит экспоненциальный рост величины градиентов.

▪️Исчезающий градиент

Это проблема, обратная предыдущей. Градиенты функции потерь наоборот становятся слишком маленькими, близкими к нулю, и веса нейросети в принципе перестают обновляться. При таких условиях качество работы модели не растёт.

Почему это происходит?

Исчезающий градиент возникает, когда произведение частных производных функции активации и весов на каждом слое меньше единицы. В этом случае градиенты уменьшаются экспоненциально по мере прохождения через каждый слой сети. В конечном итоге, градиенты становятся настолько малыми, что обновления весов практически не происходят.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/437

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA