tg-me.com/ds_interview_lib/437
Last Update:
Что вы знаете о проблемах взрывающегося и затухающего градиента?
▪️Взрывающийся градиент
Эта проблема возникает, когда градиенты функции потерь начинают расти экспоненциально во время обучения. В результате это приводит к тому, что веса становятся огромными и приходят в NaN. Конечно, сеть с такими параметрами не может моделировать зависимости корректно.
Почему это происходит?
Если говорить о математических причинах, то это случается, когда произведение частных производных функции активации и весов на каждом слое превышает единицу. Если матрица весов W имеет большое собственное значение, то при умножении этого значения на градиенты потерь происходит экспоненциальный рост величины градиентов.
▪️Исчезающий градиент
Это проблема, обратная предыдущей. Градиенты функции потерь наоборот становятся слишком маленькими, близкими к нулю, и веса нейросети в принципе перестают обновляться. При таких условиях качество работы модели не растёт.
Почему это происходит?
Исчезающий градиент возникает, когда произведение частных производных функции активации и весов на каждом слое меньше единицы. В этом случае градиенты уменьшаются экспоненциально по мере прохождения через каждый слой сети. В конечном итоге, градиенты становятся настолько малыми, что обновления весов практически не происходят.
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/ds_interview_lib/437