Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/42 -
Telegram Group & Telegram Channel
Как работает Dropout?

Dropout - это метод регуляризации нейронных сетей, который помогает предотвратить переобучение. Он работает следующим образом:
1. Исключение нейронов: В процессе обучения нейронной сети, на каждом шаге обучения, dropout случайным образом "отключает" (или исключает) некоторые нейроны сети. Это означает, что в процессе прямого и обратного распространения ошибки, эти нейроны не участвуют.
2. Параметр "вероятность отключения": Dropout вводит параметр "вероятность отключения" (обычно обозначается как p), который указывает, с какой вероятностью каждый нейрон будет исключен на каждом обновлении (проходе) через сеть.
3. Устранение переобучения: Dropout помогает бороться с переобучением, потому что он заставляет сеть стать более устойчивой и генерализировать лучше на новых данных. Из-за случайного отключения нейронов сеть вынуждена распределять вычислительные ресурсы более эффективно.
4. Использование во время тестирования: Важно помнить, что dropout используется только во время обучения сети. Когда сеть применяется для создания предсказаний на новых данных, dropout выключается, и все нейроны используются.



tg-me.com/ds_interview_lib/42
Create:
Last Update:

Как работает Dropout?

Dropout - это метод регуляризации нейронных сетей, который помогает предотвратить переобучение. Он работает следующим образом:
1. Исключение нейронов: В процессе обучения нейронной сети, на каждом шаге обучения, dropout случайным образом "отключает" (или исключает) некоторые нейроны сети. Это означает, что в процессе прямого и обратного распространения ошибки, эти нейроны не участвуют.
2. Параметр "вероятность отключения": Dropout вводит параметр "вероятность отключения" (обычно обозначается как p), который указывает, с какой вероятностью каждый нейрон будет исключен на каждом обновлении (проходе) через сеть.
3. Устранение переобучения: Dropout помогает бороться с переобучением, потому что он заставляет сеть стать более устойчивой и генерализировать лучше на новых данных. Из-за случайного отключения нейронов сеть вынуждена распределять вычислительные ресурсы более эффективно.
4. Использование во время тестирования: Важно помнить, что dropout используется только во время обучения сети. Когда сеть применяется для создания предсказаний на новых данных, dropout выключается, и все нейроны используются.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/42

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA