Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/41 -
Telegram Group & Telegram Channel
Какие существуют эмбеддинги в NLP и в чем они отличаются?

1. Word2Vec: Создает плотные векторы слов, подходит для множества задач NLP. Обучается на основе локальных контекстов в предложениях.
2. GloVe: Использует глобальную статистику совместной встречаемости слов, хорошо подходит для классификации текстов.
3. FastText: Учитывает подслова, полезен для языков с морфологией.
4. ELMo: Контекстуализированные эмбеддинги, учитывает значение слова в зависимости от контекста.
5. BERT: Мощная модель, учитывает контекст с обеих сторон слова, применяется во многих задачах NLP.
6. ULMFiT: Основан на LSTM, дообучается для конкретных задач с ограниченными данными.



tg-me.com/ds_interview_lib/41
Create:
Last Update:

Какие существуют эмбеддинги в NLP и в чем они отличаются?

1. Word2Vec: Создает плотные векторы слов, подходит для множества задач NLP. Обучается на основе локальных контекстов в предложениях.
2. GloVe: Использует глобальную статистику совместной встречаемости слов, хорошо подходит для классификации текстов.
3. FastText: Учитывает подслова, полезен для языков с морфологией.
4. ELMo: Контекстуализированные эмбеддинги, учитывает значение слова в зависимости от контекста.
5. BERT: Мощная модель, учитывает контекст с обеих сторон слова, применяется во многих задачах NLP.
6. ULMFiT: Основан на LSTM, дообучается для конкретных задач с ограниченными данными.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/41

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA