Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/355 -
Telegram Group & Telegram Channel
Что вы знаете про калибровку уверенности/вероятности?

Калибровкой уверенности или вероятности называют процесс корректировки прогнозируемых данных классификатора, чтобы они точнее отражали реальную вероятность события.

Допустим, мы решаем задачу классификации с n классами. Модель выдаёт некоторые оценки принадлежности объектов к классам — уверенности. После этого каждый объект можно отнести к классу с максимальной оценкой. Возникает вопрос: какова вероятность, что ответ верный? Эту вероятность хотелось бы оценивать на этапе формирования ответа.

«Удобный» вариант сделать это — использовать предположение, что эта вероятность равна максимальной оценке алгоритма (уверенности). Если данное равенство выполняется с достаточной точностью, то можно сказать, что «классификатор хорошо откалиброван». Условия калибровки, в принципе, могут быть и другими. Например, можно хотеть, чтобы вообще все оценки соответствовали вероятностям.

Зачем нужна калибровка?

▫️Чтобы понимать, насколько результатам алгоритма можно доверять.
▫️Чтобы точнее решать задачи. Так, в языковых моделях при генерации текстов используются вероятности появления отдельных токенов.

#машинное_обучение



tg-me.com/ds_interview_lib/355
Create:
Last Update:

Что вы знаете про калибровку уверенности/вероятности?

Калибровкой уверенности или вероятности называют процесс корректировки прогнозируемых данных классификатора, чтобы они точнее отражали реальную вероятность события.

Допустим, мы решаем задачу классификации с n классами. Модель выдаёт некоторые оценки принадлежности объектов к классам — уверенности. После этого каждый объект можно отнести к классу с максимальной оценкой. Возникает вопрос: какова вероятность, что ответ верный? Эту вероятность хотелось бы оценивать на этапе формирования ответа.

«Удобный» вариант сделать это — использовать предположение, что эта вероятность равна максимальной оценке алгоритма (уверенности). Если данное равенство выполняется с достаточной точностью, то можно сказать, что «классификатор хорошо откалиброван». Условия калибровки, в принципе, могут быть и другими. Например, можно хотеть, чтобы вообще все оценки соответствовали вероятностям.

Зачем нужна калибровка?

▫️Чтобы понимать, насколько результатам алгоритма можно доверять.
▫️Чтобы точнее решать задачи. Так, в языковых моделях при генерации текстов используются вероятности появления отдельных токенов.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/355

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA