Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/305 -
Telegram Group & Telegram Channel
Расскажите про систематическую ошибку отбора (Selection bias)

В общем, систематическая ошибка отбора говорит о том, что выводы, сделанные применительно к какой-либо группе, могут оказаться неточными из-за неправильного отбора в эту группу. В контексте машинного обучения о selection bias можно говорить, когда данные, используемые для обучения модели, не являются репрезентативными по отношению к целевой популяции, для которой предназначена модель. Это может привести к тому, что модель будет хорошо работать на тренировочных данных, но показывать плохие результаты на новых данных.

Систематическая ошибка отбора может возникать по разным причинам:
▫️Если тренировочный датасет собирается из источников, которые не охватывают всё многообразие генеральной совокупности, то данные могут быть смещены в сторону определённых значений или классов.
▫️Если в обучающем наборе отсутствуют данные по определённым категориям, то модель может совершать ошибки.

#статистика



tg-me.com/ds_interview_lib/305
Create:
Last Update:

Расскажите про систематическую ошибку отбора (Selection bias)

В общем, систематическая ошибка отбора говорит о том, что выводы, сделанные применительно к какой-либо группе, могут оказаться неточными из-за неправильного отбора в эту группу. В контексте машинного обучения о selection bias можно говорить, когда данные, используемые для обучения модели, не являются репрезентативными по отношению к целевой популяции, для которой предназначена модель. Это может привести к тому, что модель будет хорошо работать на тренировочных данных, но показывать плохие результаты на новых данных.

Систематическая ошибка отбора может возникать по разным причинам:
▫️Если тренировочный датасет собирается из источников, которые не охватывают всё многообразие генеральной совокупности, то данные могут быть смещены в сторону определённых значений или классов.
▫️Если в обучающем наборе отсутствуют данные по определённым категориям, то модель может совершать ошибки.

#статистика

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/305

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA