Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/295 -
Telegram Group & Telegram Channel
Как бороться с переобучением на примере линейной регрессии?

Есть три основных способа:

✔️Увеличить размер обучающей выборки.
Маленькая выборка снижает обобщающую способность модели, а значит повышает разброс.

✔️Уменьшить количество признаков.
Можно сделать это вручную или через специальный алгоритм. Однако есть риск выбросить нужные признаки.

✔️ Использовать регуляризацию.
Регуляризация позволяет снижать параметр (вес, коэффициент) признака и, таким образом, снижать его значимость.

Для регуляризации линейной регрессии есть несколько вариантов:
▪️Ridge (L2)
Штрафует за слишком большие коэффициенты. Этот штраф представляет собой сумму коэффициентов, возведённых в квадрат.
▪️Lasso (L1)
Для штрафа использует сумму коэффициентов по модулю.
▪️Elastic Net
Использует как L1, так и L2 регуляризацию.

#машинное_обучение



tg-me.com/ds_interview_lib/295
Create:
Last Update:

Как бороться с переобучением на примере линейной регрессии?

Есть три основных способа:

✔️Увеличить размер обучающей выборки.
Маленькая выборка снижает обобщающую способность модели, а значит повышает разброс.

✔️Уменьшить количество признаков.
Можно сделать это вручную или через специальный алгоритм. Однако есть риск выбросить нужные признаки.

✔️ Использовать регуляризацию.
Регуляризация позволяет снижать параметр (вес, коэффициент) признака и, таким образом, снижать его значимость.

Для регуляризации линейной регрессии есть несколько вариантов:
▪️Ridge (L2)
Штрафует за слишком большие коэффициенты. Этот штраф представляет собой сумму коэффициентов, возведённых в квадрат.
▪️Lasso (L1)
Для штрафа использует сумму коэффициентов по модулю.
▪️Elastic Net
Использует как L1, так и L2 регуляризацию.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/295

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram announces Anonymous Admins

The cloud-based messaging platform is also adding Anonymous Group Admins feature. As per Telegram, this feature is being introduced for safer protests. As per the Telegram blog post, users can “Toggle Remain Anonymous in Admin rights to enable Batman mode. The anonymized admin will be hidden in the list of group members, and their messages in the chat will be signed with the group name, similar to channel posts.”

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA