Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/228 -
Telegram Group & Telegram Channel
Как предотвратить переобучение при использовании XGBoost?

Стоит отметить, что XGBoost имеет встроенные механизмы регуляризации, чтобы предотвращать переобучение. Однако вы всё равно можете контролировать параметры, чтобы добиться наилучшего результата.

▪️colsample_bytree — это доля признаков, используемых для обучения. Чем меньше, тем ниже вероятность переобучения.
▪️subsample — доля выборки, используемой для обучения. Значения меньше 1 помогают предотвратить переобучение.
▪️max_depth — глубина дерева. Слишком большая глубина может привести к переобучению.
▪️gamma — минимальное уменьшение потерь, необходимое для дальнейшего разбиения узла. Большие значения препятствуют созданию сложных деревьев.
▪️min_child_weight — минимальная сумма весов наблюдений, необходимая для создания нового узла в дереве. Большие значения помогают предотвратить переобучение.

#машинное_обучение



tg-me.com/ds_interview_lib/228
Create:
Last Update:

Как предотвратить переобучение при использовании XGBoost?

Стоит отметить, что XGBoost имеет встроенные механизмы регуляризации, чтобы предотвращать переобучение. Однако вы всё равно можете контролировать параметры, чтобы добиться наилучшего результата.

▪️colsample_bytree — это доля признаков, используемых для обучения. Чем меньше, тем ниже вероятность переобучения.
▪️subsample — доля выборки, используемой для обучения. Значения меньше 1 помогают предотвратить переобучение.
▪️max_depth — глубина дерева. Слишком большая глубина может привести к переобучению.
▪️gamma — минимальное уменьшение потерь, необходимое для дальнейшего разбиения узла. Большие значения препятствуют созданию сложных деревьев.
▪️min_child_weight — минимальная сумма весов наблюдений, необходимая для создания нового узла в дереве. Большие значения помогают предотвратить переобучение.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/228

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA