Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/205 -
Telegram Group & Telegram Channel
Объясните, как учится Word2Vec? Какая функция потерь? Что максимизируется?

Word2Vec — это метод обучения векторных представлений слов. Он использует одну из двух архитектур: CBOW (Continuous Bag of Words) или Skip-gram.

▪️CBOW прогнозирует текущее слово на основе контекста (окружающих слов).
▪️Skip-gram наоборот использует текущее слово для предсказания контекста.

В процессе обучения Word2Vec использует нейронную сеть с одним скрытым слоем. Входные данные представляют собой слова в форме «one-hot encoded» векторов. Сеть обучается так, чтобы векторные представления слов в скрытом слое кодировали семантические и синтаксические характеристики слов.

Word2Vec может использовать несколько разных функций потерь, но наиболее распространёнными являются Negative Sampling Loss и Hierarchical Softmax. Цель обучения — максимизировать косинусное сходство между векторами слов, которые встречаются в похожих контекстах, и минимизировать его для слов, которые не встречаются вместе.

#NLP
#машинное_обучение



tg-me.com/ds_interview_lib/205
Create:
Last Update:

Объясните, как учится Word2Vec? Какая функция потерь? Что максимизируется?

Word2Vec — это метод обучения векторных представлений слов. Он использует одну из двух архитектур: CBOW (Continuous Bag of Words) или Skip-gram.

▪️CBOW прогнозирует текущее слово на основе контекста (окружающих слов).
▪️Skip-gram наоборот использует текущее слово для предсказания контекста.

В процессе обучения Word2Vec использует нейронную сеть с одним скрытым слоем. Входные данные представляют собой слова в форме «one-hot encoded» векторов. Сеть обучается так, чтобы векторные представления слов в скрытом слое кодировали семантические и синтаксические характеристики слов.

Word2Vec может использовать несколько разных функций потерь, но наиболее распространёнными являются Negative Sampling Loss и Hierarchical Softmax. Цель обучения — максимизировать косинусное сходство между векторами слов, которые встречаются в похожих контекстах, и минимизировать его для слов, которые не встречаются вместе.

#NLP
#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/205

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA