tg-me.com/ds_interview_lib/126
Last Update:
Объясните, как используется энтропия в процессе построения дерева решений? Что ещё может использоваться вместо энтропии?
Энтропия измеряет непредсказуемость реализации случайной величины, или иными словами неопределённость в данных.
🌲 В контексте построения дерева-классификатора объекты — это случайные величины, которые могут принимать значение либо первого, либо второго класса. Если случайная величина принимает только одно значение, то она абсолютно предсказуема, и энтропия равна нулю. Если энтропия близка к единице, это значит, что случайная величина непредсказуема.
При построении дерева мы стремимся разбить объекты так, чтобы с получившимися группами энтропия была минимальной. Пример:
🟡 Допустим, у нас есть по 25 точек каждого класса — всего 50. Сначала мы выбираем разбиение, например, по X <= 5. Тогда в левую часть попадают 25 точек класса 0 и 12 точек класса 1, а в правую — ноль точек класса 0 и 13 точек класса 1. Энтропия левой группы равна 0.9, а правой — нулю. Это логично, ведь в правой группе все объекты принадлежат только одному классу, неопределённости нет.
🟡 Мы сделаем ещё несколько разбиений и выберем из них то, которое радикальнее всего уменьшит общую неопределённость системы.
🌲 Помимо энтропии можно использовать критерий Джини. Он представляет собой вероятность того, что случайно выбранный объект из набора будет неправильно классифицирован, если его случайно пометить согласно распределению меток в подвыборке.
#junior
#middle
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/ds_interview_lib/126