Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/1059 -
Telegram Group & Telegram Channel
🤔 Может ли модель машинного обучения «обмануть» нас, даже если метрики говорят, что всё хорошо

Да — и делает это довольно часто. Модель может демонстрировать отличные метрики, но при этом решать не ту задачу, которую мы ей на самом деле поставили.

Примеры:
1️⃣ Модель для автоматического отбора резюме может использовать косвенные признаки, связанные не с квалификацией, а с демографией — например, местом жительства или формулировками, типичными для определённых групп.

2️⃣ Модель для детекции токсичных комментариев может научиться просто игнорировать сленг или грамматические ошибки, если их нет в тренировке, и при этом «наказывать» культурные диалекты.

3️⃣ Модель детектирует трещины на снимках труб, но в обучающих данных почти все трещины были сфотографированы в солнечную погоду — и модель на самом деле распознаёт освещение, а не дефекты.

Формально — всё отлично: log-loss низкий, ROC-AUC высокий. Но по сути — модель научилась «читерить». Это называют спурием-корреляциями (spurious correlations) и data leakage.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/1059
Create:
Last Update:

🤔 Может ли модель машинного обучения «обмануть» нас, даже если метрики говорят, что всё хорошо

Да — и делает это довольно часто. Модель может демонстрировать отличные метрики, но при этом решать не ту задачу, которую мы ей на самом деле поставили.

Примеры:
1️⃣ Модель для автоматического отбора резюме может использовать косвенные признаки, связанные не с квалификацией, а с демографией — например, местом жительства или формулировками, типичными для определённых групп.

2️⃣ Модель для детекции токсичных комментариев может научиться просто игнорировать сленг или грамматические ошибки, если их нет в тренировке, и при этом «наказывать» культурные диалекты.

3️⃣ Модель детектирует трещины на снимках труб, но в обучающих данных почти все трещины были сфотографированы в солнечную погоду — и модель на самом деле распознаёт освещение, а не дефекты.

Формально — всё отлично: log-loss низкий, ROC-AUC высокий. Но по сути — модель научилась «читерить». Это называют спурием-корреляциями (spurious correlations) и data leakage.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/1059

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA