Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/1051 -
Telegram Group & Telegram Channel
🌀 Почему в некоторых случаях полезно обучать модель на данных, полученных… от другой модели

Обучение на предсказаниях другой модели — это основа подхода под названием knowledge distillation (дистилляция знаний). Идея в том, что сложная, тяжёлая модель (например, глубокая нейросеть) может содержать более «мягкую» и богатую информацию о структуре задачи, чем просто метки «0» и «1».

Маленькая модель, обучающаяся не на оригинальных метках, а на вероятностных предсказаниях большой модели, может:
➡️ лучше улавливать обобщённые закономерности,
➡️ достигать качества, близкого к исходной модели,
➡️ быть гораздо быстрее и легче в продакшене.

Это особенно полезно, когда требуется deploy в ограниченной среде (например, на мобильных устройствах), но не хочется терять в качестве. Получается, что модель может «учиться у другой модели», как ученик у учителя — и это работает.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/1051
Create:
Last Update:

🌀 Почему в некоторых случаях полезно обучать модель на данных, полученных… от другой модели

Обучение на предсказаниях другой модели — это основа подхода под названием knowledge distillation (дистилляция знаний). Идея в том, что сложная, тяжёлая модель (например, глубокая нейросеть) может содержать более «мягкую» и богатую информацию о структуре задачи, чем просто метки «0» и «1».

Маленькая модель, обучающаяся не на оригинальных метках, а на вероятностных предсказаниях большой модели, может:
➡️ лучше улавливать обобщённые закономерности,
➡️ достигать качества, близкого к исходной модели,
➡️ быть гораздо быстрее и легче в продакшене.

Это особенно полезно, когда требуется deploy в ограниченной среде (например, на мобильных устройствах), но не хочется терять в качестве. Получается, что модель может «учиться у другой модели», как ученик у учителя — и это работает.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/1051

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA