Warning: preg_grep(): Compilation failed: quantifier does not follow a repeatable item at offset 142 in /var/www/tg-me/post.php on line 75
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/1035 -
Telegram Group & Telegram Channel
Как понижение размерности может помочь SVM и логистической регрессии справляться с выбросами

Понижение размерности (например, с помощью PCA, ICA или автоэнкодеров) сжимает признаки в более компактное представление. Это может выделить выбросы или уменьшить их влияние, особенно если применяются устойчивые методы. Например, в PCA выбросы могут проявляться как точки с аномально высокой дисперсией вдоль главных компонент, что позволяет их легче заметить и учесть до обучения модели.

Однако стоит быть осторожным: обычный PCA чувствителен к выбросам и может построить искажённые компоненты, подстраиваясь под аномалии. Поэтому лучше использовать робастные методы понижения размерности, которые отделяют выбросы от основного (низкорангового) представления данных. После этого SVM и логистическая регрессия обучаются уже на «очищенном» пространстве признаков.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/1035
Create:
Last Update:

Как понижение размерности может помочь SVM и логистической регрессии справляться с выбросами

Понижение размерности (например, с помощью PCA, ICA или автоэнкодеров) сжимает признаки в более компактное представление. Это может выделить выбросы или уменьшить их влияние, особенно если применяются устойчивые методы. Например, в PCA выбросы могут проявляться как точки с аномально высокой дисперсией вдоль главных компонент, что позволяет их легче заметить и учесть до обучения модели.

Однако стоит быть осторожным: обычный PCA чувствителен к выбросам и может построить искажённые компоненты, подстраиваясь под аномалии. Поэтому лучше использовать робастные методы понижения размерности, которые отделяют выбросы от основного (низкорангового) представления данных. После этого SVM и логистическая регрессия обучаются уже на «очищенном» пространстве признаков.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/1035

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA