Telegram Group & Telegram Channel
Mathematics for Data Science Roadmap

Mathematics is the backbone of data science, machine learning, and AI. This roadmap covers essential topics in a structured way.


---

1. Prerequisites

Basic Arithmetic (Addition, Multiplication, etc.)
Order of Operations (BODMAS/PEMDAS)
Basic Algebra (Equations, Inequalities)
Logical Reasoning (AND, OR, XOR, etc.)


---

2. Linear Algebra (For ML & Deep Learning)

🔹 Vectors & Matrices (Dot Product, Transpose, Inverse)
🔹 Linear Transformations (Eigenvalues, Eigenvectors, Determinants)
🔹 Applications: PCA, SVD, Neural Networks

📌 Resources: "Linear Algebra Done Right" – Axler, 3Blue1Brown Videos


---

3. Probability & Statistics (For Data Analysis & ML)

🔹 Probability: Bayes’ Theorem, Distributions (Normal, Poisson)
🔹 Statistics: Mean, Variance, Hypothesis Testing, Regression
🔹 Applications: A/B Testing, Feature Selection

📌 Resources: "Think Stats" – Allen Downey, MIT OCW


---

4. Calculus (For Optimization & Deep Learning)

🔹 Differentiation: Chain Rule, Partial Derivatives
🔹 Integration: Definite & Indefinite Integrals
🔹 Vector Calculus: Gradients, Jacobian, Hessian
🔹 Applications: Gradient Descent, Backpropagation

📌 Resources: "Calculus" – James Stewart, Stanford ML Course


---

5. Discrete Mathematics (For Algorithms & Graphs)

🔹 Combinatorics: Permutations, Combinations
🔹 Graph Theory: Adjacency Matrices, Dijkstra’s Algorithm
🔹 Set Theory & Logic: Boolean Algebra, Induction

📌 Resources: "Discrete Mathematics and Its Applications" – Rosen


---

6. Optimization (For Model Training & Tuning)

🔹 Gradient Descent & Variants (SGD, Adam, RMSProp)
🔹 Convex Optimization
🔹 Lagrange Multipliers

📌 Resources: "Convex Optimization" – Stephen Boyd


---

7. Information Theory (For Feature Engineering & Model Compression)

🔹 Entropy & Information Gain (Decision Trees)
🔹 Kullback-Leibler Divergence (Distribution Comparison)
🔹 Shannon’s Theorem (Data Compression)

📌 Resources: "Elements of Information Theory" – Cover & Thomas


---

8. Advanced Topics (For AI & Reinforcement Learning)

🔹 Fourier Transforms (Signal Processing, NLP)
🔹 Markov Decision Processes (MDPs) (Reinforcement Learning)
🔹 Bayesian Statistics & Probabilistic Graphical Models

📌 Resources: "Pattern Recognition and Machine Learning" – Bishop


---

Learning Path

🔰 Beginner:

Focus on Probability, Statistics, and Linear Algebra
Learn NumPy, Pandas, Matplotlib

Intermediate:

Study Calculus & Optimization
Apply concepts in ML (Scikit-learn, TensorFlow, PyTorch)

🚀 Advanced:

Explore Discrete Math, Information Theory, and AI models
Work on Deep Learning & Reinforcement Learning projects

💡 Tip: Solve problems on Kaggle, Leetcode, Project Euler and watch 3Blue1Brown, MIT OCW videos.



tg-me.com/datascience_bds/779
Create:
Last Update:

Mathematics for Data Science Roadmap

Mathematics is the backbone of data science, machine learning, and AI. This roadmap covers essential topics in a structured way.


---

1. Prerequisites

Basic Arithmetic (Addition, Multiplication, etc.)
Order of Operations (BODMAS/PEMDAS)
Basic Algebra (Equations, Inequalities)
Logical Reasoning (AND, OR, XOR, etc.)


---

2. Linear Algebra (For ML & Deep Learning)

🔹 Vectors & Matrices (Dot Product, Transpose, Inverse)
🔹 Linear Transformations (Eigenvalues, Eigenvectors, Determinants)
🔹 Applications: PCA, SVD, Neural Networks

📌 Resources: "Linear Algebra Done Right" – Axler, 3Blue1Brown Videos


---

3. Probability & Statistics (For Data Analysis & ML)

🔹 Probability: Bayes’ Theorem, Distributions (Normal, Poisson)
🔹 Statistics: Mean, Variance, Hypothesis Testing, Regression
🔹 Applications: A/B Testing, Feature Selection

📌 Resources: "Think Stats" – Allen Downey, MIT OCW


---

4. Calculus (For Optimization & Deep Learning)

🔹 Differentiation: Chain Rule, Partial Derivatives
🔹 Integration: Definite & Indefinite Integrals
🔹 Vector Calculus: Gradients, Jacobian, Hessian
🔹 Applications: Gradient Descent, Backpropagation

📌 Resources: "Calculus" – James Stewart, Stanford ML Course


---

5. Discrete Mathematics (For Algorithms & Graphs)

🔹 Combinatorics: Permutations, Combinations
🔹 Graph Theory: Adjacency Matrices, Dijkstra’s Algorithm
🔹 Set Theory & Logic: Boolean Algebra, Induction

📌 Resources: "Discrete Mathematics and Its Applications" – Rosen


---

6. Optimization (For Model Training & Tuning)

🔹 Gradient Descent & Variants (SGD, Adam, RMSProp)
🔹 Convex Optimization
🔹 Lagrange Multipliers

📌 Resources: "Convex Optimization" – Stephen Boyd


---

7. Information Theory (For Feature Engineering & Model Compression)

🔹 Entropy & Information Gain (Decision Trees)
🔹 Kullback-Leibler Divergence (Distribution Comparison)
🔹 Shannon’s Theorem (Data Compression)

📌 Resources: "Elements of Information Theory" – Cover & Thomas


---

8. Advanced Topics (For AI & Reinforcement Learning)

🔹 Fourier Transforms (Signal Processing, NLP)
🔹 Markov Decision Processes (MDPs) (Reinforcement Learning)
🔹 Bayesian Statistics & Probabilistic Graphical Models

📌 Resources: "Pattern Recognition and Machine Learning" – Bishop


---

Learning Path

🔰 Beginner:

Focus on Probability, Statistics, and Linear Algebra
Learn NumPy, Pandas, Matplotlib

Intermediate:

Study Calculus & Optimization
Apply concepts in ML (Scikit-learn, TensorFlow, PyTorch)

🚀 Advanced:

Explore Discrete Math, Information Theory, and AI models
Work on Deep Learning & Reinforcement Learning projects

💡 Tip: Solve problems on Kaggle, Leetcode, Project Euler and watch 3Blue1Brown, MIT OCW videos.

BY Data science/ML/AI


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/datascience_bds/779

View MORE
Open in Telegram


Data science ML AI Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Mining Work?

Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. “This is how new coins are created” and new transactions are added to the blockchain, says Okoro.

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Data science ML AI from us


Telegram Data science/ML/AI
FROM USA