tg-me.com/database_info/1471
Last Update:
Кейс: Тонкости работы с транзакциями в распределённых БД
Многие знают, что ACID — основа транзакций в классических СУБД. Но как только переходишь к распределённым решениям (например, CockroachDB, Yugabyte, Spanner), возникают интересные нюансы.
Проблема:
В распределённой БД транзакции могут “подвисать” из-за сетевых задержек, split-brain, clock skew и частых реконнектов между узлами. Строгая согласованность (strong consistency) может негативно влиять на производительность и отклик.
Типичные сложности:
– Distributed deadlocks (где одна часть транзакции ждёт другую через сеть)
– Аномалии времени (например, при использовании синхронизации через NTP)
– Цена глобального commit (двухфазный коммит медленный, а трифазный сложный)
Best practices:
– Минимизируй объём данных внутри одной транзакции
– Используй idempotent-операции, чтобы безопасно повторять неудачные транзакции
– Если возможно, проектируй систему под eventual consistency и асинхронные паттерны (saga, outbox)
– Следи за timeouts и обрабатывай partial failures (например, через retry с exponential backoff)
Кодовый пример (Saga-паттерн для микросервисов):
# Пример на псевдокоде
try:
step1()
step2()
step3()
except Exception:
compensating_action()
Saga разбивает большой бизнес-процесс на независимые шаги с откатом (compensating actions).
Вывод:
В распределённых БД транзакции требуют пересмотра архитектуры. Не полагайся только на “магический” commit — строй систему с учётом ошибок и задержек.
А с какими граблями в распределённых транзакциях сталкивался ты?
#db
👉 @database_info
BY Базы данных (Data Base)

Share with your friend now:
tg-me.com/database_info/1471