Telegram Group & Telegram Channel
Forwarded from Machinelearning
📌Ученые обнаружили сходство между мозгом человека и нейросетями в принципах обработки языка.

Совместное исследование Google Research, Принстонского университета, NYU и Еврейского университета в Иерусалиме нашло параллели в обработке естественного языка человеческим мозгом и большими языковыми моделями.

Используя внутричерепные электроды, ученые зафиксировали нейронную активность во время спонтанных диалогов и сравнили ее с внутренними представлениями модели Whisper, разработанной для преобразования речи в текст. Оказалось, что речевые эмбеддинги Whisper коррелируют с активностью в слуховых зонах мозга, а языковые — с областями, ответственными за семантику.

Эксперименты подтвердили догадки: при восприятии речи сначала активируется верхняя височная извилина (STG), обрабатывающая акустические сигналы, а через несколько сотен миллисекунд включается зона Брока (IFG), связанная с декодированием смысла. При воспроизведении речи последовательность обратная: IFG активируется за 500 мс до артикуляции, затем моторная кора планирует движение, а после произнесения слова STG «проверяет» результат. Эти паттерны совпали с динамикой эмбедингов Whisper, хотя модель не обучалась на нейробиологических данных.

Другое интересное совпадение - мозг и LLM используют предсказание следующего слова как ключевую стратегию. Как показали опыты, слушатель бессознательно предугадывает следующие слова, а ошибка предсказания вызывает «нейронное удивление» — механизм, аналогичный обучению с подкреплением в ML. Но архитектурные механизмы у мозга и LLM разные: трансформеры обрабатывают сотни слов параллельно, тогда как мозг анализирует информацию последовательно.

Несмотря на общую «мягкую иерархию» обработки (например, смешение семантических и акустических признаков в IFG и STG), биологические структуры мозга принципиально отличаются от нейронных сетей.

Исследователи подчеркивают: языковые модели (типа ChatGPT) не понимают, как люди общаются в реальной жизни (например, не чувствуют эмоций или культурных особенностей), и не учатся так, как это делает мозг человека с детства. Однако их эмбединги оказались очень полезными для изучения того, как мозг обрабатывает речь.

Ученые надеются, что эти открытия помогут создать нейросети, которые смогут обучаться как люди — медленно, шаг за шагом. А пока Whisper, неожиданно стал «зеркалом» принципов нашего мышления. Кто знает, может, через пару лет ИИ начнёт шутить с нами за чашкой кофе — как друг или коллега по работе.

🟡Статья
🟡Исследование


@ai_machinelearning_big_data

#AI #ML #Research #NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/bigdatai/1212
Create:
Last Update:

📌Ученые обнаружили сходство между мозгом человека и нейросетями в принципах обработки языка.

Совместное исследование Google Research, Принстонского университета, NYU и Еврейского университета в Иерусалиме нашло параллели в обработке естественного языка человеческим мозгом и большими языковыми моделями.

Используя внутричерепные электроды, ученые зафиксировали нейронную активность во время спонтанных диалогов и сравнили ее с внутренними представлениями модели Whisper, разработанной для преобразования речи в текст. Оказалось, что речевые эмбеддинги Whisper коррелируют с активностью в слуховых зонах мозга, а языковые — с областями, ответственными за семантику.

Эксперименты подтвердили догадки: при восприятии речи сначала активируется верхняя височная извилина (STG), обрабатывающая акустические сигналы, а через несколько сотен миллисекунд включается зона Брока (IFG), связанная с декодированием смысла. При воспроизведении речи последовательность обратная: IFG активируется за 500 мс до артикуляции, затем моторная кора планирует движение, а после произнесения слова STG «проверяет» результат. Эти паттерны совпали с динамикой эмбедингов Whisper, хотя модель не обучалась на нейробиологических данных.

Другое интересное совпадение - мозг и LLM используют предсказание следующего слова как ключевую стратегию. Как показали опыты, слушатель бессознательно предугадывает следующие слова, а ошибка предсказания вызывает «нейронное удивление» — механизм, аналогичный обучению с подкреплением в ML. Но архитектурные механизмы у мозга и LLM разные: трансформеры обрабатывают сотни слов параллельно, тогда как мозг анализирует информацию последовательно.

Несмотря на общую «мягкую иерархию» обработки (например, смешение семантических и акустических признаков в IFG и STG), биологические структуры мозга принципиально отличаются от нейронных сетей.

Исследователи подчеркивают: языковые модели (типа ChatGPT) не понимают, как люди общаются в реальной жизни (например, не чувствуют эмоций или культурных особенностей), и не учатся так, как это делает мозг человека с детства. Однако их эмбединги оказались очень полезными для изучения того, как мозг обрабатывает речь.

Ученые надеются, что эти открытия помогут создать нейросети, которые смогут обучаться как люди — медленно, шаг за шагом. А пока Whisper, неожиданно стал «зеркалом» принципов нашего мышления. Кто знает, может, через пару лет ИИ начнёт шутить с нами за чашкой кофе — как друг или коллега по работе.

🟡Статья
🟡Исследование


@ai_machinelearning_big_data

#AI #ML #Research #NLP

BY Big Data AI





Share with your friend now:
tg-me.com/bigdatai/1212

View MORE
Open in Telegram


Big Data AI Telegram | DID YOU KNOW?

Date: |

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

Big Data AI from us


Telegram Big Data AI
FROM USA