Telegram Group & Telegram Channel
🌟 Kimi-VL: VLM с MoE, ризонингом и контекстом 128K.

Moonshot AI опубликовала веса Kimi-VL — открытой VLM, которая объединяет обработку текста, изображений и видео. Благодаря архитектуре MoE модель активирует всего 2.8 млрд. параметров в языковом декодере, обеспечивая скорость, сопоставимую с компактными аналогами, и результативность флагманских решений.

Главное преимущество Kimi-VL — способность анализировать длинные контексты до 128 тыс. токенов, что делает её идеальной для работы с объемными документами, длинными видео или сложными мультимедийными задачами.

Основу модели составляет визуальный энкодер MoonViT, оптимизированный для нативной обработки изображений любого разрешения без необходимости разбивать их на части. Это позволяет точно распознавать текст, графики или UI-интерфейсы даже в высокодетализированных скриншотах.

Например, на бенчмарке InfoVQA модель показывает точность 83.2%, обходя даже GPT-4o. В задачах OCR Kimi-VL достигает 86.7% на OCRBench, что ставит её в ряд лучших в индустрии.

Разработчики также представили Kimi-VL-Thinking — версию с расширенными возможностями CoT. Благодаря использованным RL и длительному CoT-тюнингу она демонстрирует впечатляющие результаты в математических и академических задачах: на MathVista точность составила 71.3%, а на MMMU — до 61.7%, что лучше, чем у Gemma-3-12B-IT.

В тестах Kimi-VL превосходит конкурентов в работе с агентами: на OSWorld её результат 8.22% выше, чем у GPT-4o (5.03%), а на WindowsAgentArena — 10.4%. Для длинных видео модель набирает 64.5% на LongVideoBench, подтверждая способность анализировать часовые записи без потери ключевых деталей.

Модели доступны на Hugging Face в двух вариантах:

🟢Kimi-VL-A3B-Instruct для стандартных задач;

🟠Kimi-VL-Thinking для сложных рассуждений.

▶️ Инференс через Transformers занимает несколько строк кода — достаточно загрузить изображение, задать запрос и получить подробный ответ.


📌Лицензирование: MIT License.


🟡Набор моделей
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #VLM #KimiAI #MoonShotAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ai_machinelearning_big_data/7303
Create:
Last Update:

🌟 Kimi-VL: VLM с MoE, ризонингом и контекстом 128K.

Moonshot AI опубликовала веса Kimi-VL — открытой VLM, которая объединяет обработку текста, изображений и видео. Благодаря архитектуре MoE модель активирует всего 2.8 млрд. параметров в языковом декодере, обеспечивая скорость, сопоставимую с компактными аналогами, и результативность флагманских решений.

Главное преимущество Kimi-VL — способность анализировать длинные контексты до 128 тыс. токенов, что делает её идеальной для работы с объемными документами, длинными видео или сложными мультимедийными задачами.

Основу модели составляет визуальный энкодер MoonViT, оптимизированный для нативной обработки изображений любого разрешения без необходимости разбивать их на части. Это позволяет точно распознавать текст, графики или UI-интерфейсы даже в высокодетализированных скриншотах.

Например, на бенчмарке InfoVQA модель показывает точность 83.2%, обходя даже GPT-4o. В задачах OCR Kimi-VL достигает 86.7% на OCRBench, что ставит её в ряд лучших в индустрии.

Разработчики также представили Kimi-VL-Thinking — версию с расширенными возможностями CoT. Благодаря использованным RL и длительному CoT-тюнингу она демонстрирует впечатляющие результаты в математических и академических задачах: на MathVista точность составила 71.3%, а на MMMU — до 61.7%, что лучше, чем у Gemma-3-12B-IT.

В тестах Kimi-VL превосходит конкурентов в работе с агентами: на OSWorld её результат 8.22% выше, чем у GPT-4o (5.03%), а на WindowsAgentArena — 10.4%. Для длинных видео модель набирает 64.5% на LongVideoBench, подтверждая способность анализировать часовые записи без потери ключевых деталей.

Модели доступны на Hugging Face в двух вариантах:

🟢Kimi-VL-A3B-Instruct для стандартных задач;

🟠Kimi-VL-Thinking для сложных рассуждений.

▶️ Инференс через Transformers занимает несколько строк кода — достаточно загрузить изображение, задать запрос и получить подробный ответ.


📌Лицензирование: MIT License.


🟡Набор моделей
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #VLM #KimiAI #MoonShotAI

BY Machinelearning







Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7303

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

Machinelearning from us


Telegram Machinelearning
FROM USA