Telegram Group & Telegram Channel
Как резко повысить качество ответа нейросети за счет пошагового вывода и обратной связи?

Вчера мы с Володей Казаковым (из Мандрик, Казаков и роботы) готовились к митапу про ИИ. Разговорились, у кого какие открытия и инсайты случились за последнее время. Выделили два главных вывода — по одному на каждого.

1. Володя нашел мощный и простой способ оценивать навык написания промптов через тестовое задание. Вот описание метода и его идеи.

2. Ну а я открыл метод, как улучшать качество и релеватность ответов нейросети через последовательные корректировки в процессе вывода длинного перечня. По сути, это очень продвинутый «Few-shot prompts» (использование нескольких примеров) для ситуации, когда вы не уверены в качестве своих примеров для «обучения» нейросети. Расскажу подробнее!

Зачем он нужен?

Одна из распространенных проблем с качеством ответа нейросетей — это недостаточная конкретика и недостаточная релевантность вашей конкретной задаче (а, точнее, вашим специфическим трудноформализуемым представлениям о качественном результате).

Наверняка вы с таким сталкивались — когда заказчик или коллега говорит «вот это хорошо, а это — нет», но на вопрос: «помоги понять, почему, давай сформулируем критерии», отвечает: «не знаю, но я это просто чувствую/вижу».

Как он работает?

Метод последовательной корректировки и обучения нейросети достаточно прост:

1. Вы пишете подробный промпт для генерации нужного вам перечня (идей, вызовов, названий и тп), запросив много вариантов (например, 20-25), желательно попросив их нумеровать (так будет проще давать обратную связь).

2. В конце промпта вы добавляете фразу «пожалуйста, выводи по пять ответов за один раз и запрашивай у меня обратную связь, улучшая каждый следующий ответ».

3. Получив первый ответ, вы в следующем промпте отмечаете понравившиеся и непонравившиеся варианты, если можете, объясняете, чем они лучше или хуже (глядя на список, это сделать гораздо проще, чем «размышляя перед пустым листом»), и даете направления улучшения (еще конкретнее, еще детальнее, еще очевиднее в плане практической пользы и тп), и просите продолжать. По сути, таким образом вы предоставляете нейросети такие важные для нее примеры, чтобы реализовать стратегию Few-shot prompts.

4. Повторяете пункт 3 с каждым последующим ответом, давая обратную связь на предыдущий ответ

5 (!!!). Дойдя до конца перечня, просите доработать теперь и первый ответ (варианты 1-5), с учетом всех улучшений.

6. Повторяете это, пока не будете полностью довольны вариантами (обычно мне хватает ещё раз дойти до середины списка, после чего качество уже не повышается)

7. Профит.

👉 Чем это помогает в работе? Это отличный и сравнительно несложный способ повысить качество и релевантность ответа за счет обучения нейросети на предыдущих ответах (=примерах), а также осознать свои неосознанные требования, которые теперь можно формализовать.

Может показаться, что это сложновато и достаточно сделать изначально хороший промпт. Не могу с этим согласиться, потому что такое «обучение» позволяет мне добиваться такой релевантности, которую я ни разу не получал ни после первого промпта, ни после последовательного улучшения промптов при условии перезапуска процесса с начала.

в каталог кейсов (28+ примеров)



tg-me.com/PromptLab_Mozlab/96
Create:
Last Update:

Как резко повысить качество ответа нейросети за счет пошагового вывода и обратной связи?

Вчера мы с Володей Казаковым (из Мандрик, Казаков и роботы) готовились к митапу про ИИ. Разговорились, у кого какие открытия и инсайты случились за последнее время. Выделили два главных вывода — по одному на каждого.

1. Володя нашел мощный и простой способ оценивать навык написания промптов через тестовое задание. Вот описание метода и его идеи.

2. Ну а я открыл метод, как улучшать качество и релеватность ответов нейросети через последовательные корректировки в процессе вывода длинного перечня. По сути, это очень продвинутый «Few-shot prompts» (использование нескольких примеров) для ситуации, когда вы не уверены в качестве своих примеров для «обучения» нейросети. Расскажу подробнее!

Зачем он нужен?

Одна из распространенных проблем с качеством ответа нейросетей — это недостаточная конкретика и недостаточная релевантность вашей конкретной задаче (а, точнее, вашим специфическим трудноформализуемым представлениям о качественном результате).

Наверняка вы с таким сталкивались — когда заказчик или коллега говорит «вот это хорошо, а это — нет», но на вопрос: «помоги понять, почему, давай сформулируем критерии», отвечает: «не знаю, но я это просто чувствую/вижу».

Как он работает?

Метод последовательной корректировки и обучения нейросети достаточно прост:

1. Вы пишете подробный промпт для генерации нужного вам перечня (идей, вызовов, названий и тп), запросив много вариантов (например, 20-25), желательно попросив их нумеровать (так будет проще давать обратную связь).

2. В конце промпта вы добавляете фразу «пожалуйста, выводи по пять ответов за один раз и запрашивай у меня обратную связь, улучшая каждый следующий ответ».

3. Получив первый ответ, вы в следующем промпте отмечаете понравившиеся и непонравившиеся варианты, если можете, объясняете, чем они лучше или хуже (глядя на список, это сделать гораздо проще, чем «размышляя перед пустым листом»), и даете направления улучшения (еще конкретнее, еще детальнее, еще очевиднее в плане практической пользы и тп), и просите продолжать. По сути, таким образом вы предоставляете нейросети такие важные для нее примеры, чтобы реализовать стратегию Few-shot prompts.

4. Повторяете пункт 3 с каждым последующим ответом, давая обратную связь на предыдущий ответ

5 (!!!). Дойдя до конца перечня, просите доработать теперь и первый ответ (варианты 1-5), с учетом всех улучшений.

6. Повторяете это, пока не будете полностью довольны вариантами (обычно мне хватает ещё раз дойти до середины списка, после чего качество уже не повышается)

7. Профит.

👉 Чем это помогает в работе? Это отличный и сравнительно несложный способ повысить качество и релевантность ответа за счет обучения нейросети на предыдущих ответах (=примерах), а также осознать свои неосознанные требования, которые теперь можно формализовать.

Может показаться, что это сложновато и достаточно сделать изначально хороший промпт. Не могу с этим согласиться, потому что такое «обучение» позволяет мне добиваться такой релевантности, которую я ни разу не получал ни после первого промпта, ни после последовательного улучшения промптов при условии перезапуска процесса с начала.

в каталог кейсов (28+ примеров)

BY Лаборатория Промптинга Mozlab




Share with your friend now:
tg-me.com/PromptLab_Mozlab/96

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

How to Use Bitcoin?

n the U.S. people generally use Bitcoin as an alternative investment, helping diversify a portfolio apart from stocks and bonds. You can also use Bitcoin to make purchases, but the number of vendors that accept the cryptocurrency is still limited. Big companies that accept Bitcoin include Overstock, AT&T and Twitch. You may also find that some small local retailers or certain websites take Bitcoin, but you’ll have to do some digging. That said, PayPal has announced that it will enable cryptocurrency as a funding source for purchases this year, financing purchases by automatically converting crypto holdings to fiat currency for users. “They have 346 million users and they’re connected to 26 million merchants,” says Spencer Montgomery, founder of Uinta Crypto Consulting. “It’s huge.”

telegram from us


Telegram Лаборатория Промптинга Mozlab
FROM USA