Telegram Group & Telegram Channel
Если вы хотите передать данные по цепочке вызовов, самый простой способ — использовать аргументы функций.

Однако в некоторых случаях модифицировать все функции в цепочке, чтобы передать новые данные, крайне неудобно. Вместо этого вы можете настроить некоторый контекст, который будет доступен для всех функций по цепочке. Как это можно реализовать технически?

Самое простое решение — глобальная переменная. В Python также можно использовать модули и классы как хранилища контекста, так как они, строго говоря, тоже являются глобальными переменными. Вы, вероятно, делаете это ежедневно, например, для работы с логгерами.

Если ваше приложение многопоточное, обычная глобальная переменная не подойдет, так как она не является потокобезопасной. Одновременно может выполняться несколько цепочек вызовов, и каждая из них нуждается в собственном контексте. Модуль threading решает эту проблему с помощью объекта threading.local(), который является потокобезопасным. Вы можете хранить данные, просто устанавливая атрибуты, например: threading.local().symbol = '@'.

Но оба этих подхода не подходят для асинхронных приложений, где функции не только вызываются, но и могут быть приостановлены с помощью await. Если корутина выполняет await, цикл событий может переключиться на другую корутину из совершенно другой цепочки вызовов. Это приведет к некорректной работе, как в следующем примере:


import asyncio
import sys

global_symbol = '.'

async def indication(timeout):
while True:
print(global_symbol, end='')
sys.stdout.flush()
await asyncio.sleep(timeout)

async def sleep(t, indication_t, symbol='.'):
loop = asyncio.get_event_loop()

global global_symbol
global_symbol = symbol
loop.create_task(indication(indication_t))
await asyncio.sleep(t)

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(
sleep(1, 0.1, '0'),
sleep(1, 0.1, 'a'),
sleep(1, 0.1, 'b'),
sleep(1, 0.1, 'c'),
))


Решить эту проблему можно, если цикл событий будет устанавливать и восстанавливать контекст каждый раз, когда он возобновляет выполнение корутины. Модуль aiotask_context реализует это, изменяя способ создания задач с помощью loop.set_task_factory. Пример рабочей версии:


import asyncio
import sys
import aiotask_context as context

async def indication(timeout):
while True:
print(context.get('symbol'), end='')
sys.stdout.flush()
await asyncio.sleep(timeout)

async def sleep(t, indication_t, symbol='.'):
loop = asyncio.get_event_loop()

context.set(key='symbol', value=symbol)
loop.create_task(indication(indication_t))
await asyncio.sleep(t)

loop = asyncio.get_event_loop()
loop.set_task_factory(context.task_factory)
loop.run_until_complete(asyncio.gather(
sleep(1, 0.1, '0'),
sleep(1, 0.1, 'a'),
sleep(1, 0.1, 'b'),
sleep(1, 0.1, 'c'),
))


👉@BookPython



tg-me.com/BookPython/3482
Create:
Last Update:

Если вы хотите передать данные по цепочке вызовов, самый простой способ — использовать аргументы функций.

Однако в некоторых случаях модифицировать все функции в цепочке, чтобы передать новые данные, крайне неудобно. Вместо этого вы можете настроить некоторый контекст, который будет доступен для всех функций по цепочке. Как это можно реализовать технически?

Самое простое решение — глобальная переменная. В Python также можно использовать модули и классы как хранилища контекста, так как они, строго говоря, тоже являются глобальными переменными. Вы, вероятно, делаете это ежедневно, например, для работы с логгерами.

Если ваше приложение многопоточное, обычная глобальная переменная не подойдет, так как она не является потокобезопасной. Одновременно может выполняться несколько цепочек вызовов, и каждая из них нуждается в собственном контексте. Модуль threading решает эту проблему с помощью объекта threading.local(), который является потокобезопасным. Вы можете хранить данные, просто устанавливая атрибуты, например: threading.local().symbol = '@'.

Но оба этих подхода не подходят для асинхронных приложений, где функции не только вызываются, но и могут быть приостановлены с помощью await. Если корутина выполняет await, цикл событий может переключиться на другую корутину из совершенно другой цепочки вызовов. Это приведет к некорректной работе, как в следующем примере:


import asyncio
import sys

global_symbol = '.'

async def indication(timeout):
while True:
print(global_symbol, end='')
sys.stdout.flush()
await asyncio.sleep(timeout)

async def sleep(t, indication_t, symbol='.'):
loop = asyncio.get_event_loop()

global global_symbol
global_symbol = symbol
loop.create_task(indication(indication_t))
await asyncio.sleep(t)

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(
sleep(1, 0.1, '0'),
sleep(1, 0.1, 'a'),
sleep(1, 0.1, 'b'),
sleep(1, 0.1, 'c'),
))


Решить эту проблему можно, если цикл событий будет устанавливать и восстанавливать контекст каждый раз, когда он возобновляет выполнение корутины. Модуль aiotask_context реализует это, изменяя способ создания задач с помощью loop.set_task_factory. Пример рабочей версии:


import asyncio
import sys
import aiotask_context as context

async def indication(timeout):
while True:
print(context.get('symbol'), end='')
sys.stdout.flush()
await asyncio.sleep(timeout)

async def sleep(t, indication_t, symbol='.'):
loop = asyncio.get_event_loop()

context.set(key='symbol', value=symbol)
loop.create_task(indication(indication_t))
await asyncio.sleep(t)

loop = asyncio.get_event_loop()
loop.set_task_factory(context.task_factory)
loop.run_until_complete(asyncio.gather(
sleep(1, 0.1, '0'),
sleep(1, 0.1, 'a'),
sleep(1, 0.1, 'b'),
sleep(1, 0.1, 'c'),
))


👉@BookPython

BY Библиотека Python разработчика | Книги по питону


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/BookPython/3482

View MORE
Open in Telegram


Библиотека Python разработчика Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Библиотека Python разработчика from us


Telegram Библиотека Python разработчика | Книги по питону
FROM USA