Telegram Group & Telegram Channel
Что такое хуки? Как они используются в Python?

Хуки (hooks) в программировании — это специальные точки в коде, в которые можно «вклиниться», чтобы изменить или расширить поведение программы без модификации её исходного кода. Хуки позволяют добавлять дополнительную логику или выполнять нужные действия, когда происходят определенные события.


⚫️Как хуки используются в Python?

В Python хуки часто реализуются в библиотеках и фреймворках для того, чтобы пользователи могли добавлять свои функции, выполняющиеся при определённых событиях. Они применяются в тестировании, веб-разработке, обработке данных и многих других областях. Вот несколько примеров использования хуков в Python:

1. Тестовые фреймворки (например, pytest):
В тестовом фреймворке pytest есть хуки для настройки и завершения тестов. Вы можете создать функции, которые будут выполняться до начала тестов (`pytest_runtest_setup`) или после их завершения (`pytest_runtest_teardown`). Это удобно для создания и очистки тестовой среды.


# Пример hook-функции в pytest
def pytest_runtest_setup(item):
print(f"Setting up for test: {item.name}")


2. Веб-фреймворки (например, Django):
В Django хуки используются для расширения поведения, например, перед или после сохранения объекта. Так, у моделей Django есть хуки pre_save и post_save, которые позволяют выполнять код до и после сохранения объекта в базе данных.


from django.db.models.signals import pre_save
from django.dispatch import receiver
from .models import MyModel

@receiver(pre_save, sender=MyModel)
def my_hook(sender, instance, **kwargs):
print("This runs before saving MyModel instance.")


3. Flask (перед/после обработки запроса):
Flask имеет хуки before_request и after_request, которые позволяют выполнить код до обработки HTTP-запроса или после отправки ответа.


from flask import Flask

app = Flask(__name__)

@app.before_request
def before_request_func():
print("This runs before each request")

@app.after_request
def after_request_func(response):
print("This runs after each request")
return response


4. Логирование и обработка ошибок:
Встроенный модуль logging в Python поддерживает хуки для настраиваемой обработки логов, например, через методы addFilter или создание своих обработчиков (`handlers`), чтобы настроить кастомное поведение логирования.

Хуки гибкие и удобные, поскольку они позволяют разработчику интегрировать собственную логику в существующий код, не изменяя его.

👉@BookPython
Please open Telegram to view this post
VIEW IN TELEGRAM
👍54



tg-me.com/BookPython/3284
Create:
Last Update:

Что такое хуки? Как они используются в Python?

Хуки (hooks) в программировании — это специальные точки в коде, в которые можно «вклиниться», чтобы изменить или расширить поведение программы без модификации её исходного кода. Хуки позволяют добавлять дополнительную логику или выполнять нужные действия, когда происходят определенные события.


⚫️Как хуки используются в Python?

В Python хуки часто реализуются в библиотеках и фреймворках для того, чтобы пользователи могли добавлять свои функции, выполняющиеся при определённых событиях. Они применяются в тестировании, веб-разработке, обработке данных и многих других областях. Вот несколько примеров использования хуков в Python:

1. Тестовые фреймворки (например, pytest):
В тестовом фреймворке pytest есть хуки для настройки и завершения тестов. Вы можете создать функции, которые будут выполняться до начала тестов (`pytest_runtest_setup`) или после их завершения (`pytest_runtest_teardown`). Это удобно для создания и очистки тестовой среды.


# Пример hook-функции в pytest
def pytest_runtest_setup(item):
print(f"Setting up for test: {item.name}")


2. Веб-фреймворки (например, Django):
В Django хуки используются для расширения поведения, например, перед или после сохранения объекта. Так, у моделей Django есть хуки pre_save и post_save, которые позволяют выполнять код до и после сохранения объекта в базе данных.


from django.db.models.signals import pre_save
from django.dispatch import receiver
from .models import MyModel

@receiver(pre_save, sender=MyModel)
def my_hook(sender, instance, **kwargs):
print("This runs before saving MyModel instance.")


3. Flask (перед/после обработки запроса):
Flask имеет хуки before_request и after_request, которые позволяют выполнить код до обработки HTTP-запроса или после отправки ответа.


from flask import Flask

app = Flask(__name__)

@app.before_request
def before_request_func():
print("This runs before each request")

@app.after_request
def after_request_func(response):
print("This runs after each request")
return response


4. Логирование и обработка ошибок:
Встроенный модуль logging в Python поддерживает хуки для настраиваемой обработки логов, например, через методы addFilter или создание своих обработчиков (`handlers`), чтобы настроить кастомное поведение логирования.

Хуки гибкие и удобные, поскольку они позволяют разработчику интегрировать собственную логику в существующий код, не изменяя его.

👉@BookPython

BY Библиотека Python разработчика | Книги по питону


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/BookPython/3284

View MORE
Open in Telegram


Библиотека Python разработчика Telegram | DID YOU KNOW?

Date: |

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Библиотека Python разработчика from us


Telegram Библиотека Python разработчика | Книги по питону
FROM USA